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Introduction

Algebras with a semilattice operation, which commutes with all other oper-
ations, have been studied in various forms. In many respects these algebras
behave similarly to modules. For example, it is proved in [15] that if a locally
�nite variety of type-set {5} satis�es a term-condition similar to the term-
condition for abelian algebras, then it has a semilattice term that commutes
with all other term operations.

Within the class of modes�that is, idempotent algebras whose basic
operations commute with each other�those having a semilattice term oper-
ation play an important role (see [29, 30]); these algebras are called semilat-
tice modes. The structure of locally �nite varieties of semilattice modes is
described in [14].

An interesting class of algebras with a commuting semilattice operation
arises if we add automorphisms, as basic operations, to a semilattice. This is
a special case of the construction studied in [3]. In general, one can expand
any variety V by a �xed monoid F of endomorphisms in a natural way. The
expanded variety is the variety of V-algebras A equipped with new unary
basic operations, acting as endomorphisms on A. In this construction we
keep F �xed, and do the same when F is a group. We remark that there
is a di�erent approach, when the group F is not kept �xed; what one gets
then is the theory of varieties of group representations, where the objects are
groups acting on some semilattices (see [1]).

In a number of di�erent cases the simple and subdirectly irreducible alge-
bras of the expanded variety have been determined. In [11] J. Jeºek described
all simple algebras in the variety of semilattices expanded by two commuting
automorphisms. In this case the monoid F is the free commutative group
with two generators. In [12] he also described all subdirectly irreducible
semilattices with a single distinguished automorphism.

In Chapter 1 we generalize the main result of [11] to arbitrary com-
mutative group F, that is, we describe all simple algebras in the variety
of semilattices expanded by an abelian group of automorphisms (published
in [19]). The same results were discovered independently by R. El Basher
and T. Kepka in [7]. In fact, their results are slightly more general: they
study simple semimodules over commutative semirings, where addition is a
semilattice operation.

General duality theory is capable of describing various well-known duali-
ties�for example Pontryagin's, Stone's and Priestley's�between a cate-
gory A of algebras with homomorphisms and a category X of topological
structures with continuous structure preserving maps. In all these cases the
class A is a quasi-variety generated by a single algebra P ∈ A, and X is
the class of closed substructures of powers of an object P∼ ∈ X having the
same underlying set as P. By this theory, not every quasi-variety admits a
natural duality. Therefore, to leverage the power of duality, it is natural to
ask which �nitely generated quasi-varieties admit a natural duality. Is this
characterization possible? Is it decidable of a �nite algebra P whether the
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quasi-variety generated by P admits a natural duality? This second ques-
tion is known as the natural duality problem. Currently, we do not know the
answer to this problem, but many expect it to be undecidable.

The natural duality problem was partially reduced to a pure algebraic
problem in the following way. We call a term t of an algebra P a near-

unanimity term if it satis�es the following identities:

t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, . . . , x, y) ≈ x.

Near-unanimity term operations come up naturally in the study of algebras.
For example, all lattices have a ternary near-unanimity term t(x, y, z) = (x∧
y)∨(y∧z)∨(z∧x). From E. L. Post's classi�cation [27] we know that almost
all clones on a two element set contain a near-unanimity operation; the
exceptions are those that are contained in 〈∧, 0, 1〉, 〈+, 0, 1〉, 〈→〉 or in their
duals. It is also well known that an algebra having a near-unanimity term
lies in a congruence distributive variety, and has a �nite base of identities
provided it is of �nite signature (see [31]).

B. A. Davey and H. Werner proved in [6] that in the presence of a near-
unanimity term of P, the quasi-variety A generated by P admits a natural
duality. The converse was proved in [5] under the assumption that A is
congruence join-semi-distributive: if A admits a natural duality and is con-
gruence join-semi-distributive then P has a (�nitary) near-unanimity term.
This theorem, known as the near-unanimity obstacle theorem, implies that
if it were undecidable of a �nite algebra whether it has a near-unanimity
term, then the natural duality problem would also be undecidable. We call
the premise of this implication the near-unanimity problem, which was posed
in [5] over ten years ago.

Clearly, the algebra P has a near-unanimity term operation t if and only
if the equations

t(y, x, . . . , x) = t(x, y, x, . . . , x) = · · · = t(x, . . . , x, y) = x

hold for the generator elements x, y of the two-generated free algebra in
the quasi-variety A generated by P. Probably this observation motivated
R. McKenzie's unpublished result [23] where he proves that it is undecidable
of a �nite algebra P and a pair x, y ∈ P of �xed elements whether P has a
term t that behaves as a near-unanimity term on {x, y}. This result does not
imply the undecidability of the near-unanimity problem because the algebras
used in his construction are not freely generated by the elements x, y in the
quasi-variety they generate.

The key result presented in Chapter 2 is the improvement of R. McKen-
zie's result to a �xed |P | − 2 element subset, and the simpli�cation of his
elaborate construction (to appear in [20]). The basic idea, however, is intact:
the use of Minsky machines�which are equivalent to Turing machines�and
the encoding of their computations in the terms of P. The method used
in the proof relies on an absorbing element as the indicator of defects. An
improvement of this method to |P | − 1 elements might be possible, which
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could be formulated, analogously to the results in [13], as the undecidability
of the near-unanimity problem for partial algebras:

Problem 1. Given a �nite partial algebra, decide whether it has a term that

is de�ned on all near-unanimous evaluations and satis�es the near-unanimity

identities.

In Chapter 3 we show that the near-unanimity problem is decidable,
which is a rather surprising development after the negative partial results
(unpublished, see [21]). As an immediate consequence of the decidability of
the near-unanimity problem and the near-unanimity obstacle theorem, the
natural duality problem for �nite algebras that generate a congruence join-
semi-distributive variety is also decidable. However, the decidability of the
natural duality problem in general is still open.

The proof of the decidability of the near-unanimity problem relies on the
study of the following special fragment of clones. Given an operation t, we
consider those binary operations�called polymers�with their multiplicities
that arise as t(x, . . . , x, y, x, . . . , x) where the lone y is at a �xed coordi-
nate. Clearly, near-unanimity operations are characterized by their binary
polymers; namely they all must be equal to x. By studying the polymers
of composite operations, we arrive to a notion of composition for binary
polymers, which we use to solve the near-unanimity problem.

Since there are only �nitely many algebras on a �xed n-element set whose
basic operations are at most r-ary, by the decidability of the near-unanimity
problem, there exists a recursive function N(n, r) that puts an upper limit
on the minimum arity of a near-unanimity term operation for those alge-
bras that have one. Consequently, given an algebra P whose operations are
at most r-ary, one can decide the near-unanimity problem by simply con-
structing all at most N(|P |, r)-ary terms and checking if one of them yields a
near-unanimity operation. If no such is found, then P has no near-unanimity
term operation. We know that such recursive function N(n, r) exists, but
currently we do not have a formula for one.

A very interesting group of open problems is related to the constraint

satisfaction problem, which we do not de�ne here and refer the reader to [8]
for details. It is proved in [10] that if a set Γ of relations on a set admits
a compatible near-unanimity operation, then the corresponding constraint
satisfaction problem CSP(Γ) is solvable in polynomial time. Therefore, it is
natural to consider the near-unanimity problem for relations:

Problem 2. Given a �nite set Γ of relations on a set, decide whether there

exists a near-unanimity operation that is compatible with each member of Γ.

Currently we are unable to solve this problem, even in the light of our
result. We know that if a clone has a near-unanimity operation, then both the
clone and its dual relational clone are �nitely generated (see [31]). Inspired
by this fact, we ask the following:
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Problem 3. Given a �nite set of operations and a �nite set of relations on

the same underlying set, decide if the functional and relational clones they

generate are duals of each other.

The three chapters of the dissertation are self contained, independent
of each other, and are based on the essential parts of [19, 20] and [21],
respectively. We assume basic knowledge of universal algebra and direct the
reader to either [2] or [24] for reference. Although the study of the near-
unanimity problem stems from the study of natural dualities (see [4, 5]), the
reader is not required to know this theory.
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1 F-semilattices

In [3] one can �nd the de�nition of the expansion of a variety by a �xed
monoid of endomorphisms, and also some basic properties of this construc-
tion. In this section we need only the following special case.

De�nition 1.1. An algebra S = 〈S;∧, F 〉 with a binary operation ∧ and a
set F of unary operations is an F-semilattice, if F = 〈F ; ·,−1, id〉 is a group
and S satis�es the following identities:

(1) the operation ∧ is a semilattice operation,

(2) id(x) ≈ x,

(3) f(g(x)) ≈ (f · g)(x) for all f, g ∈ F , and

(4) f(x ∧ y) ≈ f(x) ∧ f(y) for all f ∈ F .

In other words, an F-semilattice is a semilattice expanded with a set F
of new operations which forms an automorphism group of the semilattice.
Usually the group F will be �xed. Note that every semilattice can be con-
sidered as an F-semilattice in a trivial way: every unary operation of F acts
as the identity function. Now we give a much more typical example of an
F-semilattice.

De�nition 1.2. Let P(F ) = 〈P (F );∧, F 〉 be the F-semilattice which is
de�ned on the set P (F ) of all subsets of F by setting

(1) A ∧B = A ∩B for all A,B ⊆ F , and

(2) f(A) = A · f−1 for all f ∈ F and A ⊆ F .

Thus the meet operation is intersection, and every unary operation f ∈ F
acts by taking complex product with f−1 on the right hand side. We show
that P(F ) contains all subdirectly irreducible F-semilattices.

Proposition 1.3. Every subdirectly irreducible F-semilattice can be embed-

ded in P(F ).

Proof. Let S be a subdirectly irreducible F-semilattice. For every element
s ∈ S we de�ne a homomorphism ϕs from S to P(F ) as follows:

ϕs : S → P (F ); ϕs(x) = { f ∈ F | f(x) ≥ s }. (1.3a)

This function is indeed a homomorphism, since

ϕs(x ∧ y) = { f ∈ F | f(x ∧ y) ≥ s }
= { f ∈ F | f(x) ∧ f(y) ≥ s }
= { f ∈ F | f(x) ≥ s and f(y) ≥ s }
= { f ∈ F | f(x) ≥ s } ∩ { f ∈ F | f(y) ≥ s }
= ϕs(x) ∧ ϕs(y),
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and for any unary operation g ∈ F we have

ϕs(g(x)) = { f ∈ F | f(g(x)) ≥ s }
= { f ∈ F | (f · g)(x) ≥ s }
= {h · g−1 ∈ F | h(x) ≥ s }
= {h ∈ F | h(x) ≥ s } · g−1

= ϕs(x) · g−1

= g(ϕs(x)).

Now we show that at least one of these homomorphisms is an embedding
from S to P(F ). Let 〈x, y〉 ∈

⋂
s∈S kerϕs be an arbitrary pair of elements.

Since 〈x, y〉 ∈ kerϕx, therefore ϕx(x) = ϕx(y). We have id ∈ ϕx(x) by
equation (1.3a), so id ∈ ϕx(y), thus again by equation (1.3a) we conclude
that y ≥ x. A similar argument shows that x ≥ y, thus x = y. This
proves that the congruence

⋂
s∈S kerϕs is the equality relation on S. But S

is subdirectly irreducible, therefore for at least one element s ∈ S the kernel
of ϕs is the equality relation. Hence ϕs is an embedding.

We have seen that every subdirectly irreducible F-semilattice is isomor-
phic to some subalgebra of P(F ). So it is natural to ask which subalgebras
of P(F ) are in fact subdirectly irreducible. The following corollary states
that all �nite subalgebras of P(F ) are subdirectly irreducible. However, it
is not hard to construct an example showing that the in�nite subalgebras of
P(F ) are not necessarily subdirectly irreducible.

Proposition 1.4. The �nite subdirectly irreducible F-semilattices are exactly

the nontrivial �nite subalgebras of P(F ).

Proof. We already know from Proposition 1.3 that the �nite subdirectly
irreducible F-semilattices are subalgebras of P(F ). Conversely, we must
show that each nontrivial �nite subalgebra of P(F ) is indeed subdirectly
irreducible. Let U be a �nite subalgebra of P(F ), and suppose that U has
more than one element. First we will de�ne a pair of elements in U , and
subsequently we will show that every nontrivial congruence of U contains
this pair. Clearly, this is enough to ensure that U is subdirectly irreducible.

Consider the pair 〈M, ∅〉 where

M =
⋂
{A ∈ U | id ∈ A }. (1.4a)

The set on the right hand side of equation (1.4a) is not empty. In order to
verify this, we choose an element A of U di�erent from the empty set. This
can be done, since U has more than one element. Let a be an arbitrary
element of A. From De�nition 1.2 we see that a(A) = A · a−1, and since
id ∈ A ·a−1, we conclude that id ∈ a(A). Therefore the set on the right hand
side of equation (1.4a) contains the element a(A) of U , thus it is nonempty.
Furthermore, this set is �nite, since U is �nite. Finally, if we use the meet
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operation of P(F ), we get that the set M is in U . With a similar argument
it is easy to verify that the empty set is also in U . To this end we need to
take the intersection of all elements of U .

Now we show that M is a subgroup of F. It is obvious that id ∈ M .
Let m be an arbitrary element of M . Then id ∈ M · m−1 = m(M), so
by equation (1.4a) we get M ·m−1 ⊇ M . If we multiply this inclusion by
m on the right, we conclude that M ⊇ M · m for every element m of M .
Therefore M is closed under the multiplication of F. To prove that M is
closed under taking inverses also, consider the sets M · mk where k is a
nonnegative integer. Since M ∈ U and M · mk = m−k(M), we see that
these sets are elements of U . But U is �nite, so there exist two distinct
integers k and l, such that M ·mk = M ·ml. We can assume without loss
of generality that k > l. Since k − l − 1 ≥ 0 and M is a monoid, we get
mk−1 = mk−l−1 ·ml ∈ M ·ml = M ·mk, that is, m−1 ∈ M . Now we are
ready to complete our proof.

Let ϑ be a congruence of U di�erent from the equality relation. Hence
we can choose a pair 〈A,B〉 ∈ ϑ with A 6= B. Without loss of generality we
can assume that A 6⊆ B, thus we can choose an element a ∈ A \B. For this
element a we have id ∈ a(A), but id 6∈ a(B). Let

〈C,D〉 = 〈a(A) ∩M,a(B) ∩M〉.

Clearly, this pair belongs to ϑ. Furthermore, we have id ∈ C and C ⊆ M ,
thus by equation (1.4a) we conclude that C equals M . On the other hand,
id 6∈ D and D ⊆ M . We show that D must be equal to the empty set.
In order to verify this suppose that d is an arbitrary element of D. Then
id ∈ d(D), and since M is a subgroup of F, d(D) is also a subset of M . In
view of equation (1.4a) this means that d(D) = M , thus D equalsM . Hence
id ∈ D, a contradiction. So we have shown that 〈C,D〉 = 〈M, ∅〉.

We remark that we have proved more than what we stated in Proposi-
tion 1.4. Namely, in the last paragraph of the proof we have also shown that
M is an atom of U. Since the unary operations of U are automorphisms of
the semilattice reduct of U, we conclude that the atoms of U are exactly the
right cosets of M . So the above proof yields also a proof for the following
lemma.

Lemma 1.5. If a subalgebra U of P(F ) contains the empty set and the set

M =
⋂
{A ∈ U | id ∈ A },

where M is a subgroup of F, then U is subdirectly irreducible, and the atoms

in U are exactly the right cosets of M .

In view of equation (1.4a) one can de�ne the set M for each subalgebra
U of P(F ), but in generalM will be neither a subgroup of F nor an element
of U . However, if U is the image of a subdirectly irreducible F-semilattice
under the embedding described in the proof of Proposition 1.3, thenM does
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enjoy similar properties. Later on we will need these technical properties
which are summarized in the following lemma.

Lemma 1.6. If S is a subdirectly irreducible F-semilattice, then S is iso-

morphic to a subalgebra U of P(F ). The algebra U can be selected so that

it has a unique element M ⊆ F with the following properties:

(1) id ∈M and M ·M = M ,

(2) A = M ·A for all A ∈ U , and

(3) M =
⋂
{A ∈ U | id ∈ A }.

This means that the element M of U�considered as a subset of F�is
a submonoid of F, and every element in U is closed with respect to taking
complex product with M . Furthermore, the element M is the least element
in U which contains the element id ∈ F.

Proof. We will use the embedding ϕs which was de�ned in the proof of
Proposition 1.3. So suppose that S is a subdirectly irreducible F-semilattice,
s is a �xed element of S, and ϕs is an embedding of S into P(F ). Let
U = ϕs(S) and M = ϕs(s). Now we show that for any element A ∈ U the
equality

A = { f ∈ F | A ⊇M · f } (1.6a)

holds. To verify this, let a ∈ S be an element such that ϕs(a) = A. Since
ϕs is an isomorphism from S to U, we have

A = ϕs(a)
= { f ∈ F | f(a) ≥ s }
= { f ∈ F | ϕs(f(a)) ⊇ ϕs(s) }
= { f ∈ F | f(ϕs(a)) ⊇ ϕs(s) }
= { f ∈ F | f(A) ⊇M }
= { f ∈ F | A · f−1 ⊇M }
= { f ∈ F | A ⊇M · f }.

Since M ⊇ M · id, it follows from equation (1.6a) that id ∈ M . Again
by equation (1.6a) it is easy to see that A ⊇M ·A for every element A ∈ U .
Finally, since id ∈ M , we conclude that A = M · A. In particular, for the
element M ∈ U this means that M = M ·M . In order to prove (3), let A
be an element of U containing the element id. Then we have A = M · A ⊇
M · id = M . This proves the inclusion ⊆. The reverse inclusion is obvious,
as M is one of the sets that are intersected on the right hand side.

Corollary 1.7. If F is a locally �nite group, then, up to isomorphism, the

subdirectly irreducible F-semilattices are exactly those nontrivial subalgebras

U of P(F ) for which the set M =
⋂
{A ∈ U | id ∈ A } is an element of U.

Furthermore, if U satis�es this condition, then it also has the following

properties:

8



(1) ∅ ∈ U ,

(2) M is a subgroup of F, and

(3) the atoms of U are exactly the right cosets of M .

Proof. In Lemma 1.6 we have proved that each subdirectly irreducible F-
semilattice is isomorphic to a subalgebra U of P(F ) such that M ∈ U.

For the converse statement let U be a nontrivial subalgebra of P(F ) such
that M ∈ U. We must show that U is subdirectly irreducible. From now on
we will use similar ideas as in the proof of Proposition 1.4. In the same way
as in that proof, we see that M is a submonoid of F. But F is locally �nite,
therefore M must be a subgroup of F.

Now we show that U contains the empty set. We will repeatedly use the
fact that M and the elements generated by M in P(F ) are in U. Suppose
�rst that M = F . Then for any element A of U di�erent from the empty
set and for any element a ∈ A, the set a(A) is in U and id ∈ a(A). By
the de�nition of M this means that A = F . But U contains more than one
element, so in this case we conclude that U = {F, ∅}. Now let us consider the
case where M is a proper subgroup of F. Then for any element f ∈ F \M
we have f−1(M) ∧M = ∅, that is, the empty set is again in U .

So far we have veri�ed the properties (1) and (2). Now we can apply
Lemma 1.5 to obtain that U is subdirectly irreducible and has property (3)
as well.

Up to this point we have proved that every subdirectly irreducible F-
semilattice is isomorphic to some subalgebra of P(F ). Furthermore, we have
seen that the nontrivial �nite subalgebras ofP(F ) are subdirectly irreducible,
and if F is locally �nite, then we have described a family of subalgebras of
P(F ) which represents all subdirectly irreducible F-semilattices. In both of
these special cases it turned out that these subdirectly irreducible subalge-
bras of P(F ) contain the empty set and some subgroup M of F. Now we
will show that such an algebra is simple if and only if it consists of the empty
set and the right cosets of M .

De�nition 1.8. If F is a �xed group and M is a subgroup of F, then let
SM denote the subalgebra of P(F ), the elements of which are the empty set
and the right cosets of M .

Thus the empty set is the least element in SM , and all the right cosets
of M are atoms. The set F of unary operations of SM acts as a transitive
permutation group on the set of atoms. It is easy to see that each SM is a
simple subalgebra of P(F ) which has a least element and some atoms. The
following lemma shows that the converse statement is also true.

Lemma 1.9. The subalgebras SM of P(F ) are, up to isomorphism, exactly

those simple F-semilattices that have a least element and some atoms.
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Proof. It is easy to verify that each subalgebra SM is simple, and clearly
contains a least element and some atoms. For the converse, let S be a simple
F-semilattice with a least element 0 and an atom a. By Lemma 1.6, S
is isomorphic to some subalgebra U of P(F ). From the de�nition of this
embedding we see that the image of 0 is the empty set. Let us denote the
image of a by A. We can assume that id ∈ A, because A is nonempty and
for any element f ∈ A the element f(A) of U is an atom containing the
identity. On the other hand, we also know from 1.6 that in U there exists a
unique element M with properties (1)�(3). In particular, M is a submonoid
of F. Since id ∈ A, we have M ⊆ A by Lemma 1.6 (3). But A is an atom,
therefore A must be equal toM , so the submonoidM is an atom in U. Now
we show that this submonoid M is actually a subgroup.

For every element m ∈ M , the set m−1(M) = M · m is an element of
U and a subset of M . But it cannot be a proper subset of M , because M
is an atom, so M · m = M . Therefore M is a subgroup of F. The right
cosets of M are the atoms of U, and together with the empty set they form
a subalgebra of U which is exactly the algebra SM . Our last task is now to
show that SM coincides with U.

Consider the equivalence relation ϑ on U which has only one nontrivial
equivalence class, namely the set SM . We check that ϑ is a congruence
relation of U. It is clear that every unary operation of U preserves this
relation, since SM is a subuniverse of U. On the other hand, we know that
the elements of SM are the least element and the atoms in U, therefore the
meet operation also preserves ϑ. Since U is simple, we conclude that ϑ must
be the full relation on U, so U must be equal to SM .

We have characterized the subdirectly irreducible F-semilattices in two
special cases in Proposition 1.4 and Corollary 1.7. In view of the previous
lemma we can now easily characterize the simple F-semilattices in these
cases. It is enough to observe that in these cases the simple F-semilattices
contain a least element and some atoms. But this is trivial in the �rst case,
and in the second case it follows from Corollary 1.7.

Corollary 1.10. The �nite simple F-semilattices are, up to isomorphism,

exactly the subalgebras SM of P(F ) where M runs over the subgroups of

�nite index of F.

Corollary 1.11. If F is a locally �nite group, then the simple F-semilattices

are, up to isomorphism, exactly the subalgebras SM of P(F ).

The rest of this section is devoted to the description of all simple F-
semilattices in the case when F is a �xed commutative group. We will see
that there are two types of simple F-semilattices in this case. One of the
types consists of the algebras isomorphic to SM , as in Corollaries 1.10 and
1.11. The other type of simple F-semilattices will turn out to be repre-
sentable by an F-semilattice of real numbers where the unary operations act
as translations. First we consider the simple F-semilattices which have a
least element.
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Proposition 1.12. If F is a commutative group, then the simple F-semilat-

tices containing a least element are, up to isomorphism, exactly the subalge-

bras SM of P(F ).

Proof. Let S be a simple F-semilattice which contains a least element. We
have to prove that S is isomorphic to some subalgebra SM of P(F ). By
Lemma 1.6, S is isomorphic to some subalgebra U of P(F ). Moreover, we
know that U can be selected in such a way that it contains the empty set
and a unique element M with properties (1)�(3). In particular, the element
M is a submonoid of F. Our aim is to prove thatM is not only a submonoid
of F but also a subgroup of F. Once this is done, we can use Lemma 1.5 to
show that M is actually an atom of U, and we can complete the proof using
the same argument as in the last paragraph of Lemma 1.9.

In order to prove thatM is a subgroup of F, let us introduce the notation
M−1 for the set of inverses of the elements inM . We de�ne a homomorphism
ϕ from U to P(F ) as follows:

ϕ : U → P (F ); ϕ(A) = M−1 ·A. (1.12a)

This mapping is compatible with all unary operations, because

ϕ(f(A)) = M−1 · f(A)

= M−1 ·A · f−1

= ϕ(A) · f−1

= f(ϕ(A)).

Now we have to show that

M−1 · (A ∩B) = (M−1 ·A) ∩ (M−1 ·B).

The inclusion ⊆ is trivial. To prove the reverse inclusion, let us choose an
element from the right hand side. So there exist elements a ∈ A, b ∈ B,
m,n ∈ M such that m−1 · a = n−1 · b. Since F is commutative this is
equivalent to the equality n · a = m · b. But by Lemma 1.6 (2) we know
that A = M · A and B = M · B, hence both A and B contain the element
n · a = m · b. Therefore our original element m−1 · a can be expressed in the
way of (m−1 · n−1) · (n · a) ∈ M−1 · (A ∩ B). So we have shown that ϕ is a
homomorphism from U to P(F ).

Clearly, ϕ(∅) = ∅ and ϕ(M) = M−1 ·M . Since M−1 ·M 6= ∅, the kernel
of the homomorphism ϕ cannot be the full relation. But U is simple, hence
ϕ must be an embedding. Now let m be an arbitrary element ofM . SinceM
is a submonoid, we haveM−1 ·M ·m = M−1 ·M , that is, ϕ(M ·m) = ϕ(M).
However, ϕ is an embedding, hence M ·m = M . This means that M is a
subgroup of F, so the proof is complete.

From now on we will discuss simple F-semilattices that have no least
element. We will see that they can be embedded in a special algebra which
we de�ne now.
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De�nition 1.13. Let F be a �xed commutative group. Then for every
nonconstant homomorphism β from F to the additive group 〈R; +〉 of the
real numbers let us de�ne an F-semilattice Rβ = 〈R;min, F 〉 on the set of
real numbers as follows:

(1) min(a, b) is taken with respect to the natural order of R, and

(2) f(a) = a− β(f) for all f ∈ F and a, b ∈ R.

As we will see later, not every subalgebra of this algebra is simple;
however the algebras Rβ contain, up to isomorphism, all the simple F-
semilattices without least element.

Lemma 1.14. If F is a �xed commutative group then every simple F-
semilattice without least element can be embedded in Rβ for an appropriate

nonconstant homomorphism β.

Proof. The �rst step of the proof is to represent the given simple F-semilat-
tice, according to Lemma 1.6, as a subalgebra of P(F ). So we have a simple
subalgebra U of P(F ) without least element. Furthermore, U has an element
M , which is actually a submonoid of F, and in additionM has the properties
described in Lemma 1.6. We will see that in this situation M must have
M ∪M−1 = F . This will lead us to the proof that the semilattice order of
U is linear, and that any two distinct element of U can be separated by a
shifted image f(M) = M ·f−1 ofM . At this point we will choose a unit shift
e ∈ F . The number 0 ∈ Rβ will correspond to M , and the integers k ∈ Rβ

to M · ek. After this, we will extend this correspondence to the rational
numbers and then to the real numbers. Meanwhile the homomorphism β
will also be discovered.

Now let us see the details.

Claim 1. ∅, F 6∈ U .

Since U has no least element, U cannot contain the empty set. In order to
prove that F 6∈ U , suppose the contrary. To this end let ϑ be the equivalence
relation on U which has only two blocks {F} and U \ {F}. Clearly, ϑ is
compatible with the unary operations as well as with intersection, so it is a
congruence relation. Since U has no least element, U must be in�nite. So
the block U \{F} contains more than one element, and hence the congruence
relation ϑ is not trivial. But this contradicts the assumption that U is simple.

Claim 2. The submonoid M of F is not a subgroup.

In the second last paragraph of Corollary 1.7 we have shown that if M
were a subgroup of F, then U would contain the empty set. But the empty
set would be a least element in U, and we know that U has none, therefore
M cannot be a subgroup of F.

Claim 3. M−1 ·M = F .
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We will use the homomorphism ϕ de�ned in equation (1.12a) (the proof
that ϕ is indeed a homomorphism works here, as well). Here the kernel of ϕ
is not the equality relation. This is because of the fact that the submonoid
M is not a subgroup. To see this, choose an element m from M \M−1. We
will examine the images of M and M ·m−1 under ϕ. Since m−1 6∈ M and
m−1 ∈ M · m−1, we have M 6= M · m−1. On the other hand, the images
under ϕ are ϕ(M) = M−1 ·M and ϕ(M ·m−1) = M−1 ·M ·m−1, respectively.
But the setM−1 ·M is a subgroup of F, because F is commutative andM is
a submonoid. Therefore ϕ(M) = ϕ(M ·m−1). This shows that ϕ cannot be
an embedding, hence it must be a constant homomorphism, since its domain
is the simple algebra U.

If f is an arbitrary element of F , the sets M and f(M) = M · f−1

are elements of U , so their images under ϕ are equal. This means that
M−1 ·M = M−1 ·M · f−1 for every element f ∈ F . Since M−1 ·M is a
subgroup of F, f−1 ∈M−1·M for every element f ∈ F , that is,M−1·M = F .

Claim 4. F = M ∪M−1.

Let us suppose the contrary. So, we can take an element r ∈ F such that
neither r nor r−1 is in M . This will lead to a contradiction. First of all we
will de�ne a sequence ai (i = 1, 2, . . . ) in M . Since M−1 ·M = F , we know
that for an arbitrary element f ∈ F there exist elements a, b ∈M such that
f = a−1 · b. In other words, for every element f ∈ F there exists an element
a ∈ M such that f · a ∈ M . We can apply this argument several times to
de�ne the elements ai (i = 1, 2, . . . ) in such a way that

a1 ∈M with r · a1 ∈M,
a2 ∈M with r2 · a1 · a2 ∈M,

...
...

ai ∈M with ri · a1 · . . . · ai ∈M,

Furthermore, we require that the choice ai = id has to be made whenever
ri · a1 · . . . · ai−1 ∈M .

Now we de�ne a homomorphism ψ : U → P(F ) by setting

ψ(A) = { f ∈ F | f · (ri · a1 · . . . · ai) ∈ A for almost all natural numbers i }.

It is easy to see that this mapping is compatible with the unary operations
as well as with intersection. Now we show that this mapping is not injective;
namely, we have

ψ(M) = ψ(M ∩M · r).

The sets M and M ∩M · r are distinct elements of U , because the �rst one
contains id, while the other one does not, since r−1 6∈M .

In order to see that the images are equal, take an element f from ψ(M).
This means that f · (ri · a1 · . . . · ai) ∈ M for almost all i. Therefore there
exists a natural number k such that this condition holds for every i ≥ k. If
f · (ri ·a1 · . . . ·ai) ∈M , then let us multiply each side by r ·ai+1, and we get
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f ·(ri+1 ·a1 ·. . .·ai ·ai+1) ∈M ·ai+1 ·r. But we know that ai+1 ∈M andM is a
submonoid, so we getM ·ai+1 ⊆M . Therefore f ·(ri+1 ·a1 · . . . ·ai+1) ∈M ·r.
To sum it up, we know that f · (ri · a1 · . . . · ai) ∈ M · r if i > k. But the
element f · (ri ·a1 · . . . ·ai) is in M , hence it is in M ∩M · r, too. This proves
the inclusion ψ(M) ⊆ ψ(M ∩M · r). The reverse inclusion is trivial, since
M ∩M · r is a subset of M .

So far we have proved that ψ is a homomorphism from U to P(F ), and
it is not an embedding. Since the algebra U is simple, we conclude that
ψ must be a constant mapping. The question is which element of P(F )
is assigned by ψ to the elements of U . Since ψ is a homomorphism, this
element must form a one element subalgebra of P(F ). But because of the
unary operations, there are only two such subalgebras of P(F ), namely {∅}
and {F}. From the de�nition of ψ we see that ψ(M) contains id, hence we
conclude that ψ(M) = F .

In particular, the element r is in ψ(M). This means that there exists a
natural number k such that r · (ri · a1 · . . . · ai) ∈M for every i ≥ k. But this
shows that we have chosen id when we de�ned the element ai+1. Therefore
we conclude that ak+1 = ak+2 = · · · = id. Since ψ(M) = F , the element
(a1 · a2 · . . . · ak)−1 is also in ψ(M). This means that there exists a natural
number l such that (a1 · a2 · . . . · ak)−1 · (ri · a1 · . . . · ai) ∈ M for every
i ≥ l. We can assume without loss of generality that l > k. This shows that
M 3 (a1 · a2 · . . . · ak)−1 · (ri · a1 · . . . · ai) = ri · ak+1 · . . . · ai = ri for every
i ≥ l.

Up to this point we have proved the following statement. If neither r nor
r−1 is in M , then there exists a natural number l such that rl, rl+1, · · · ∈M .
If we switch the role of r and r−1, we get in the same way another natural
number j such that r−j , r−j−1, · · · ∈ M . Now choose a natural number i
greater than both k and l. Then ri+1 and r−i are elements of M , and since
M is a submonoid of F, we get r = ri+1 · r−i ∈M . But this contradicts our
assumption that M contains neither r nor r−1.

Claim 5. Set inclusion yields a linear order on U. Furthermore if A and B
are two elements of U such that A 6⊆ B, then for any element a ∈ A \B we

have B ⊆M · a ⊆ A.

Clearly, the second statement implies the �rst. In order to prove the sec-
ond statement, consider elements A,B ∈ U and a ∈ A\B. From Lemma 1.6
we know that M · A = A, so M · a ⊆ A. Now suppose that the other in-
clusion does not hold, that is, there exists an element b ∈ B \M · a. Thus
b · a−1 ∈ B · a−1 \M . By Claim 4 we get that the element b · a−1 must be
in M−1, so a · b−1 ∈ M . Thus a = (a · b−1) · b ∈ M · B = B, and this is a
contradiction. So we conclude that B ⊆M · a.

At this stage of the proof we can indicate how the homomorphism β : F →
〈R; +〉 will be de�ned. We have the subset M of F which divides F into
two parts. Those elements of F which lie in M will be mapped by β to
nonpositive real numbers; and those which lie in M−1, to the nonnegative
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ones. The kernel of β will be the subgroup M ∩M−1 of F. Now we take an
element e which will be mapped by β to the number 1. So let us choose and
�x an element e fromM−1\M . This can be done, sinceM is not a subgroup
of F . Since β is to be a homomorphism, for any integer k the elements of
M · ek must correspond to real numbers not greater than k. This suggests
the conjecture that every element of F will be an element of M · ek for some
integer k.

Claim 6.
⋃
k∈Z

M · ek = F .

We will de�ne again a homomorphism η fromU toP(F ). For any element
A ∈ U let

η(A) =
⋃
k∈Z

A · ek.

It is easy to see that this mapping is compatible with the unary operations,
since F is commutative. To prove that η is compatible with the intersection
as well, we have to show that

⋃
k∈Z

(A ∩B) · ek =

(⋃
k∈Z

A · ek
)
∩

(⋃
k∈Z

B · ek
)
.

The inclusion ⊆ is trivial. To prove the reverse inclusion, take an arbitrary
element from the right hand side. So there exist elements a ∈ A, b ∈ B
and integers k, l ∈ Z such that a · ek = b · el. We can assume that k ≤ l.
Since e ∈ M−1, we get that ek−l ∈ M . From Lemma 1.6 we know that
A = M · A, hence the element a · ek−l belongs to A. But from the equality
a · ek−l · el = a · ek = b · el we get a · ek−l = b ∈ A∩B, therefore the element
a · ek−l · el = b · el is in (A ∩B) · el.

The homomorphism η cannot be injective, since η(M) = η(M · e) but
M 6= M · e (as e ∈ M · e \M). But U is simple, therefore η is a constant
mapping. The same argument as before for ψ yields that η maps each element
of U to F . In particular, η(M) = F , which is what we wanted to prove.

Claim 7. For any integer k we have id ∈M · ek i� k ≥ 0.

This claim is an immediate consequence of the facts that e ∈ M−1 \M
and that M is a submonoid of F.

Now we can de�ne the homomorphism β : F → 〈R; +〉. For any element
a ∈ F let

β(a) = inf
{
k

l
∈ Q

∣∣∣∣ k ∈ Z, l ∈ N and al ∈M · ek
}
. (1.14a)

Claim 8. The mapping β is a nonconstant homomorphism from F to 〈R; +〉.
Furthermore,

(1) β(ei) = i for any integer i, and
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(2) β(m) ≤ 0 for every element m ∈M .

To see that β is well de�ned, we have to check that for every element
a ∈ F the set on the right hand side of equation (1.14a) is nonempty, and
has a lower bound. So let a be an arbitrary element of F . By Claim 6
we get an integer k such that a ∈ M · ek, therefore the set on the right
hand side of equation (1.14a) contains k. Again by Claim 6 we get another
integer i such that a−1 ∈M · ei. Since M is closed under multiplication, we
get a−l ∈ M · eil for any natural number l. If for some integer k we have
al ∈M · ek, then id = al · a−l ∈M · ek ·M · eil = M · ek+il, hence by Claim 7
the exponent k+ il is nonnegative. This implies that k/l ≥ −i, therefore the
integer −i is a lower bound for the rational numbers belonging to the set in
equation (1.14a).

Now we show that β(ei) = i for any integer i. It is clear that ei ∈M · ei,
hence from equation (1.14a) we get β(ei) ≤ i/1 = i. Now suppose that
(ei)l ∈M · ek for some integer k and natural number l. Thus id ∈M · ek−il,
and by Claim 7 we get k/l ≥ i. This shows that β(ei) = i.

From the de�nition of β it is clear that β(m) ≤ 0 for every element
m ∈M , since we can choose 0 for k and 1 for l.

Now we prove that β(a−1) ≤ −β(a) for every element a ∈ F . To this
end let ε be an arbitrary small positive real number, and let us choose the
numbers k and l such that β(a)−ε ≤ k/l < β(a). From k/l < β(a) we know
that al 6∈M · ek. Using the facts that M is a submonoid of the commutative
group F and that M ∪M−1 = F , we get

al 6∈M · ek ⇒ al · e−k 6∈M
⇒ al · e−k ∈M−1

⇒ a−l · ek ∈M
⇒ a−l ∈M · e−k

⇒ (a−1)l ∈M · e−k.

But according to equation (1.14a) this means that β(a−1) ≤ −k/l. Since
we have chosen the numbers k and l such that −k/l ≤ −β(a) + ε, we get
β(a−1) ≤ −β(a)+ε. But this holds for every positive real number ε, therefore
it must hold for zero, that is, β(a−1) ≤ −β(a).

To prove that β is compatible with multiplication, let a, b ∈ F and let ε
be an arbitrary small positive real number. From the de�nition of β we get
two pairs k1, l1 and k2, l2 of integers such that l1, l2 > 0 and

β(a) ≤ k1

l1
≤ β(a) + ε where al1 ∈M · ek1 , and

β(b) ≤ k2

l2
≤ β(b) + ε where bl2 ∈M · ek2 .

Since M is a submonoid, raising al1 ∈ M · ek1 to the l2th power yields
al1l2 ∈M ·ek1l2 . Similarly bl1l2 ∈M ·el1k2 , and by multiplication we conclude
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that (a · b)l1l2 ∈M · ek1l2+l1k2 . By the de�nition of β this means that

β(a · b) ≤ k1l2 + l1k2

l1l2
=
k1

l1
+
k2

l2
≤ β(a) + β(b) + 2ε.

But ε was again an arbitrary positive real number, hence it follows that
β(a · b) ≤ β(a) + β(b). Finally, the inequalities below prove that β(a · b) =
β(a) + β(b) and β(a−1) = −β(a):

β(a · b) ≤ β(a) + β(b)

= β(a) + β(a−1 · a · b)
≤ β(a) + β(a−1) + β(a · b)
≤ β(a)− β(a) + β(a · b)
= β(a · b).

Now we can de�ne an embedding ξ : U → Rβ which will complete the
proof of the lemma. For any element A ∈ U let

ξ(A) = sup{β(a) | a ∈ A }. (1.14b)

Claim 9. The mapping ξ is an embedding of U in Rβ. Furthermore, ξ(M ·
f) = β(f) for every element f ∈ F .

To see that ξ is well de�ned, we have to check that for every element
A ∈ U the set on the right hand side of equation (1.14b) has an upper
bound. By Claim 1 we have A 6= ∅, and we can choose an element f ∈ F \A
for every element A ∈ U . Since f ∈M · f \A, by Claim 5 we get A ⊆M · f .
So we conclude that if ξ(M ·f) exists, then ξ(A) also exists, by the de�nition
of ξ, and ξ(A) ≤ ξ(M · f).

Now we prove that ξ(M · f) = β(f). From Claim 8 we know that β is a
homomorphism, and β(m) ≤ 0 for every element m ∈ M . Hence for every
element m · f of M · f we have

β(m · f) = β(m) + β(f) ≤ 0 + β(f) = β(f).

Therefore ξ(M · f) ≤ β(f). But f ∈ M · f , so ξ(M · f) ≥ β(f), hence
ξ(M · f) = β(f).

In order to prove that ξ is compatible with the semilattice operation, let
A,B be arbitrary elements in U . By Claim 5 we can assume that A ⊆ B.
But from this we get ξ(A) ≤ ξ(B), and hence

ξ(A ∩B) = ξ(A) = min(ξ(A), ξ(B)).

Now we are going to show that ξ is compatible with the unary operations
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as well. For arbitrary elements A ∈ U and f ∈ F we have

ξ(f(A)) = ξ(A · f−1)

= sup{β(b) | b ∈ A · f−1 }
= sup{β(a · f−1) | a ∈ A }
= sup{β(a) + β(f−1) | a ∈ A }
= sup{β(a) | a ∈ A }+ β(f−1)

= ξ(A) + β(f−1)
= ξ(A)− β(f)
= f(ξ(A)).

So we conclude that ξ is a homomorphism from U to Rβ . Since ξ(M ·
ek) = β(ek) = k for every integer k, ξ cannot be a constant mapping. But
U is simple, hence ξ is an embedding.

The next example shows that for a homomorphism β : F → R, a subal-
gebra S of Rβ is not necessarily simple. This will help us to describe the
simple subalgebras of Rβ .

Example 1.15. Let F be the additive group 〈Z; +〉 of the integers and

β : F → 〈R; +〉 be the identical embedding. Then the subalgebra S of Rβ

with the underlying set

S =
{ a

2
∈ R | a ∈ Z

}
is not simple.

Proof. Clearly, the subset S of R is closed under the operation of subtracting
any integer β(i) = i (i ∈ Z), that is, it is closed under the unary operations
of Rβ . In addition, S is also closed under the binary operation of taking the
minimum. Therefore S is a subalgebra of Rβ .

Now we construct a nontrivial congruence relation ϑ on S which will yield
that S is not simple. Let ϑ be the equivalence relation on S whose blocks
are the two-element sets {i, i + 1/2}, where i ∈ Z. Clearly, this relation is
compatible with the operations of S.

Now we will show that if the image of β contains arbitrary small positive
real numbers, then every subalgebra of Rβ is simple. Let us de�ne this
property of β exactly.

De�nition 1.16. A homomorphism β : F → 〈R; +〉 is called dense if for each
real number ε > 0 there exists an element f ∈ F such that 0 < β(f) ≤ ε.

Lemma 1.17. If F is a commutative group and β : F → 〈R; +〉 is a dense

homomorphism, then every subalgebra of Rβ is simple.
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Proof. Let S be a subalgebra of Rβ . We will prove that every pair of two
distinct real numbers x, y in S generates the full congruence of S. Clearly,
this ensures that S is simple. So let ϑ denote the congruence relation on S
generated by the pair 〈x, y〉. We may assume that x < y. Since β is dense,
there exists an element e ∈ F such that 0 < β(e) ≤ y− x. Let ε = β(e) > 0,
and z = x+ ε. The number z is in S, because

z = x+ ε = x+ β(e) = x− β(e−1) = e−1(x) ∈ S.

Since the pairs 〈x, y〉 and 〈z, z〉 are in ϑ, we have

ϑ 3 〈min(x, z),min(y, z)〉 = 〈x, z〉 = 〈x, x+ ε〉.

If we apply the unary operation e−k ∈ F to the pair 〈x, x + ε〉 for some
integer k, we get

ϑ 3 〈e−k(x), e−k(x+ ε)〉
= 〈x− β(e−k), x+ ε− β(e−k)〉
= 〈x+ β(ek), x+ ε+ β(ek)〉
= 〈x+ kε, x+ ε+ kε〉
= 〈x+ kε, x+ (k + 1)ε〉.

Since ϑ is transitive, we conclude that 〈x+kε, x+lε〉 ∈ ϑ for any two integers
k, l.

Now we prove that every pair 〈r, s〉 ∈ S × S belongs to ϑ. Since ε > 0,
we can choose two integers k, l such that x + kε < r, s < x + lε. Hence we
have

ϑ 3 〈min(x+ kε, r),min(x+ lε, r)〉 = 〈x+ kε, r〉, and
ϑ 3 〈min(x+ kε, s),min(x+ lε, s)〉 = 〈x+ kε, s〉.

Finally, the symmetry and the transitivity of ϑ yields 〈r, s〉 ∈ ϑ.

Let us examine the case when β is not dense. It turns out that in this
case Rβ contains, up to isomorphism, only one simple subalgebra, which has
the following structure.

De�nition 1.18. Let F be a �xed commutative group. Then for every
surjective homomorphism α from F onto the additive group 〈Z; +〉 of the
integers let Zα = 〈Z;min, F 〉 be the F-semilattice de�ned on the set of
integers as follows:

(1) min(a, b) is taken with respect to the natural order of Z, and

(2) f(a) = a− α(f) for all f ∈ F and a, b ∈ Z.

Lemma 1.19. If F is a commutative group and α : F → 〈Z; +〉 is a surjec-

tive homomorphism, then the F-semilattice Zα is simple.
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Proof. The proof is the same as that of Lemma 1.17, except that the role of
ε should be now played by 1. Since α is surjective, we can �nd an element
e ∈ F such that α(e) = ε = 1.

Lemma 1.20. If β : F → 〈R; +〉 is a nonconstant and nondense homo-

morphism, then there exists a positive real number ε such that the mapping

α : f 7→ β(f)/ε is a surjective homomorphism of F onto 〈Z; +〉. Further-

more, every simple subalgebra of Rβ is isomorphic to Zα.

Proof. Since β is not constant, the real number

ε = inf{β(f) | f ∈ F and β(f) > 0 } (1.20a)

is well de�ned. The homomorphism β is not dense, thus ε > 0.
Now we show that there exists an element e ∈ F such that β(e) = ε.

Since ε > 0, by equation (1.20a) we can choose an element e ∈ F such that
ε ≤ β(e) < 2ε. If β(e) 6= ε, then we can again �nd an element f ∈ F
such that ε ≤ β(f) < β(e) < 2ε. Hence 0 < β(e) − β(f) < ε. But β is a
homomorphism, therefore β(e · f−1) = β(f) − β(e). So we have found an
element e · f−1 ∈ F such that 0 < β(e · f−1) < ε, which contradicts the
de�nition of ε. Therefore we conclude that β(e) = ε.

Now we prove that β(f)/ε ∈ Z for every element f ∈ F . This will ensure
that α assigns integers to the elements of F . Let f ∈ F be an arbitrary
element. Since ε > 0, we can choose an integer k such that kε ≤ β(f) <
(k+ 1)ε. But β(ek) = kβ(e) = kε, therefore 0 ≤ β(f)− kε = β(a · e−k) < ε.
By the de�nition of ε we get 0 = β(f) − kε, that is, β(f)/ε ∈ Z. Since
β(ek) = kε for every integer k, we conclude that the mapping α of F into Z
is surjective. Finally, since β is a homomorphism, α is also a homomorphism.

To complete the proof, it remains to be checked that if S is a simple
subalgebra of Rβ , then it is isomorphic to Zα. To this end let us choose
an arbitrary element s ∈ S. Now we de�ne a mapping ϕ of S into Zα, and
subsequently we show that ϕ is a surjective homomorphism. For any number
a ∈ S let

ϕ(a) = b(a− s)/εc.

Clearly, this mapping is order preserving, and for any integer k we have

ϕ(ek(a)) = ϕ(a− β(ek))
= ϕ(a− kε)
= b(a− kε− s)/εc
= b(a− s)/ε− kc
= b(a− s)/εc − k.
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Thus ϕ is surjective. Since α(f) ∈ Z for any unary operation f ∈ F ,

f(ϕ(a)) = f(b(a− s)/εc)
= b(a− s)/εc − α(f)
= b(a− s)/ε− α(f)c
= b(a− s)/ε− β(f)/εc
= b(a− β(f)− s)/εc
= b(f(a)− s)/εc
= ϕ(f(a)).

Hence ϕ is a surjective homomorphism of S onto Zα. But S is simple,
therefore ϕ is an isomorphism.

Now we can summarize the results in Proposition 1.12 and Lemmas 1.14
through 1.20 to give a characterization of all simple F-semilattices for a
commutative group F.

Theorem 1.21. If F is a commutative group, then every simple F-semi-

lattice is isomorphic to one of the following algebras:

(1) SM , where M is a subgroup of F,

(2) Zα, where α : F → 〈Z; +〉 is a surjective group homomorphism, and

(3) the subalgebras of Rβ, where β : F → 〈R; +〉 is a dense group homo-

morphism.

Furthermore, these simple F-semilattices are pairwise nonisomorphic, except

for the case when β1, β2 are dense homomorphisms, S1,S2 are subalgebras

of Rβ1 ,Rβ2 respectively, and there exist real numbers t > 0 and d such that

β2 = tβ1 and S2 = tS1 + d.

Proof. Let F be a �xed commutative group. First of all we know that the
F-semilattices listed in (1), (2) and (3) are simple (use Lemmas 1.9, 1.19 and
1.17, respectively). Our task is now to prove that each simple F-semilattice
S is isomorphic to one of these.

If S has a least element, then according to Proposition 1.12, S is isomor-
phic to some algebra listed in (1). Now suppose that S has no least element.
By Lemma 1.14 we can assume that S is a subalgebra of Rβ for an appro-
priate nonconstant homomorphism β : F → 〈R; +〉. If β is dense, then S is
one of the algebras listed in (3). If β is not dense, then by Lemma 1.20, S is
isomorphic to some algebra listed in (2). So we have proved the �rst part of
the theorem.

In the rest of the proof we will show that the given algebras in (1), (2)
and (3) are pairwise nonisomorphic, except for the special cases indicated
above. Since the algebras in (1) have a least element, while the algebras in (2)
and (3) have not, the algebras in (1) cannot be isomorphic to any algebra
in (2) or (3). Now we show that distinct algebras in (1) are nonisomorphic;
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that is, if M1 and M2 are distinct subgroups of F, then SM1 6∼= SM2 . We can
assume that M2 6⊆M1, so we can choose an element f ∈M1 \M2. We recall
that if two algebras are isomorphic then the same identities hold in them.
The identity x ∧ f(x) = x holds in SM1 , since ∅ ∩ f(∅) = ∅, and for each
element M1 · a ∈ SM1 we have

M1 · a ∩ f(M1 · a) = M1 · a ∩M1 · a · f−1

= M1 · a ∩M1 · f−1 · a
= M1 · a ∩M1 · a
= M1 · a.

On the other hand, the identity x ∧ f(x) = x does not hold in SM2 , since
M2 6= M2 · f−1 and M2 ∩ f(M2) = M2 ∩M2 · f−1 = ∅. Hence we conclude
that SM1 and SM2 are nonisomorphic.

Let Zα be an arbitrary algebra from (2). Then for any two integers
a, b ∈ Zα there are only �nitely many elements in Zα that are between a and
b with respect to the natural order induced by the meet operation. However,
if S is a subalgebra of Rβ , that is, if S is an algebra from (3), then for any
two di�erent real numbers a, b ∈ Rβ there are in�nitely many elements in Rβ

that are between a and b, because β is dense. This implies that the algebras
in (2) are not isomorphic to any algebra in (3).

Now we will show that if α1 and α2 are distinct surjective homomor-
phisms of F onto 〈Z; +〉, then Zα1 6∼= Zα2 . Since α1 6= α2, we can choose an
element f ∈ F such that α1(f) 6= α2(f). If either α1(f) or α2(f) is zero,
then we can assume that α1(f) = 0 6= α2(f), and we will examine the iden-
tity f(x) = x. If α1(f) and α2(f) have opposite signs, then we can assume
that α1(f) < 0 < α2(f), and we examine the identity x ∧ f(x) = x. It is
easy to check that in these cases the identities hold in Zα1 but they fail in
Zα2 , thus Zα1 6∼= Zα2 . For example the identity x ∧ f(x) = x holds in Zα1 ,
because α1(f) < 0 and f(x) = x− α1(f) > x.

Now let us examine the case when α1(f) and α2(f) have the same sign.
We can assume that |α1(f)| > |α2(f)| > 0. Since α1 is surjective, we can
choose an element e ∈ F such that α1(e) = 1. We know that α1(f) is an
integer, so let g = f · e−α1(f) ∈ F . Hence we have

α1(g) = α1(f · e−α1(f))

= α1(f) + α1(e−α1(f))
= α1(f) + (−α1(f))α1(e)
= α1(f)− α1(f)α1(e)
= α1(f)− α1(f)
= 0,

and similarly

α2(g) = α2(f)− α1(f)α2(e).
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It is easy to see that α2(g) 6= 0, since |α1(f)| > |α2(f)| > 0 and α2(e) is an
integer. So we have found again an element g ∈ F such that α1(g) = 0 6=
α2(g). Hence the identity g(x) = x holds in Zα1 but fails in Zα2 . Thus we
conclude that the algebras listed in (2) are pairwise nonisomorphic.

In order to complete the proof, we have to show that the only possibil-
ity for two algebras from (3) to be isomorphic is the case indicated in the
statement of the theorem. Let β1, β2 be dense homomorphisms from F to
〈R; +〉, and S1, S2 be subalgebras of Rβ1 , Rβ1 , respectively. If t > 0 and d
are real numbers such that β2 = tβ1 and S2 = tS1 + d, then let us de�ne an
isomorphism τ : Rβ1 → Rβ2 by

τ(x) = tx+ d.

This mapping is indeed an isomorphism, since it is bijective, it preserves the
natural order, and for any unary operation f ∈ F and real number x we
have

f(τ(x)) = τ(x)− β2(f)
= tx+ d− tβ1(f)
= t(x− β1(f)) + d

= t · f(x) + d

= τ(f(x)).

Now it is easy to see that the restriction of τ to S1 is an isomorphism between
S1 and S2.

Conversely, let ι : S1 → S2 be an isomorphism. Since β1 is dense, we
can choose an element f ∈ F such that β1(f) > 0. If β2(f) ≤ 0, then in
S2 we have f(x) = x − β2(f) ≥ x, thus the identity x ∧ f(x) = x holds
in S2. However, this identity does not hold in S1, since in S1 we have
f(x) = x − β1(x) < x. This contradicts our assumption S1

∼= S2, hence we
conclude that β2(f) > 0. Put

t =
β2(f)
β1(f)

,

thus t > 0. If β2 6= tβ1 then we have an element g ∈ F such that β2(g) 6=
tβ2(g). Suppose β2(g) < tβ1(g). Since β2(f) > 0, we can choose integers
p, q ∈ Z such that q > 0 and

β2(g) <
p

q
β2(f) < tβ1(g).

Multiplying by q > 0 and using β2(f) = tβ1(f), we get

qβ2(g) < pβ2(f) = tpβ1(f) < tqβ1(g).

Since β1, β2 are homomorphisms and t > 0, we get

β2(gq) < β2(fp) and β1(fp) < β1(gq).
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This implies that the identity fp(x)∧ gq(x) = fp(x) holds in S2, but fails in
S1. It is not hard to see that this method works also for the other case when
β2(g) > tβ1(g). Thus we get a contradiction, which shows that β2 = tβ1.

Now let us choose an arbitrary real number s1 ∈ S1, and put s2 = ι(s1) ∈
S2 and d = s2 − ts1. Furthermore, let

Qi = { f(si) | f ∈ F } = { si − βi(f) | f ∈ F } for i = 1, 2.

Clearly Qi ⊆ Si for i = 1, 2, and since βi is a dense homomorphism, Qi

is a dense subset of R, and hence of Si, too. Now we will show that the
isomorphisms τ : Rβ1 → Rβ2 and ι coincide on the set Q1 ⊆ R. For each
element f(s1) ∈ Q1 we have ι(f(s1)) = f(ι(s1)) = f(s2) and τ(f(s1)) =
f(τ(s1)) = f(ts1 + d) = f(s2). Thus τ yields a bijection between Q1 and
Q2.

Since both τ and ι preserve the natural order of the real numbers, and
they coincide on Q1, and the sets Q1, Q2 are dense in S1, S2, respectively,
the isomorphisms τ and ι coincide on the whole set S1. Thus τ(S1) = S2,
that is, tS1 + d = S2.

Up to this point we have seen two types of simple F-semilattices. The
�rst type consists of the algebras SM , while the other type contains the
algebras Zα and Rβ . The simple F-semilattices of the �rst type have a least
element and some atoms, while the algebras of the second type are linear.
It is possible to construct an example of a simple F-semilattice which has
a least element but no atoms and its semilattice order is not linear. From
Corollary 1.11 we know that the group F cannot be locally �nite in this
example. By Lemma 1.14 we also know that F cannot be commutative.
Therefore it is natural to let F to be an appropriate in�nite subgroup of the
symmetric group Sym Z of the set of integers. We refer the reader to [19]
where the construction of this example is carried out in detail.
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2 The undecidability of a partial near-unanimity
term

The near-unanimity problem is to decide of a �nite algebra if it has a near-
unanimity term. In an attempt to prove the undecidability of this problem
the following approach was taken by R. McKenzie.

De�nition 2.1. Let A be a �xed �nite algebra, t(x1, . . . , xn) be a term
of A, and S be a subset of A. We say that t is a partial near-unanimity term

on S if

t(y, x, . . . , x) = t(x, y, x, . . . , x) = · · · = t(x, . . . , x, y) = x

for all x, y ∈ S.

Clearly, a term t of A is a near-unanimity term if and only if it is a
partial near-unanimity term on A, but more interestingly, if and only if t
is a partial near-unanimity term of the two-generated free algebra in the
variety generated by A on the set {x, y} of generators. Thus it is natural to
study the decidability of the partial near-unanimity problem on some �xed
subset of a �nite algebra. It is proved in [23] that the existence of a partial
near-unanimity term on a �xed two-element subset is undecidable. We will
extend this result to a subset excluding two �xed elements, which is our main
result in this chapter.

Theorem 2.2. There exists no algorithm that can decide of a �nite algebra

A and two �xed elements r, w ∈ A if A has a partial near-unanimity term

on the set A \ {r, w}.

Following the proof of R. McKenzie, our work is based on the undecid-
ability of the halting problem for Minsky machines. The Minsky machine
was invented by M. Minsky in 1961 (see [25, 26]), but he writes that the
concept was inspired by some ideas of M. O. Rabin and D. Scott [28]. The
�hardware� of a Minsky machineM consists of two registers A and B, which
can contain arbitrary natural numbers. The �software� is a �nite set S of
states together with a list of commands. There are two special states: the
initial state q1 ∈ S, and the halting state q0 ∈ S. The machine starts in the
initial state, stops at the halting state, and at any given time it is in one of
the states. For each state i ∈ S \ {q0} there is a unique command which is
either of the form

• i : inc R, j or

• i : dec R, j, k

where R ∈ {A,B} and j, k ∈ S. The �rst command instructs the machine
to increase the value stored in register R by one, and then to go to state j.
The second command �rst checks the value stored in register R; if it is zero,
then the machine goes to state j; otherwise the value stored in register R
is decremented by one and the machine goes to state k. Now we give the
formal de�nition.
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De�nition 2.3. A Minsky machine M = 〈S, q0, q1,M〉 is a �nite set S of
states with two distinguished elements q0, q1 ∈ S together with a mapping

M : S \ {q0} → { 〈R, j〉, 〈R, j, k〉 | R ∈ {A,B} and j, k ∈ S }.

We call q0 the halting state, and q1 the initial state. The symbols A and B
represent the registers.

The mappingM describes the commands ofM in the following way. For
any given state i ∈ S \ {q0} the tuple M(i) is either of the form 〈R, j〉 or
〈R, j, k〉, which correspond to the two types of commands described earlier.

De�nition 2.4. A con�guration 〈i, a, b〉 of M is an element of S × N × N,
which speci�es the current state and the values of the registers. We call
〈i, a, b〉 an initial con�guration (halting con�guration) if i = q1 (or i = q0,
respectively).

For any con�guration the Minsky machineM uniquely determines (com-
putes) the next con�guration. By iteration, starting from the initial con�gu-
ration with zero registers, we obtain a sequence of con�gurations, which will
be called the computation of M.

De�nition 2.5. The processor for M is a partial mapping of the set of
con�gurations into itself denoted by M̄ and de�ned as

M̄(〈i, a, b〉) =



unde�ned if i = q0,

〈j, a+ 1, b〉 if M(i) = 〈A, j〉,
〈j, 0, b〉 if M(i) = 〈A, j, k〉 and a = 0,
〈k, a− 1, b〉 if M(i) = 〈A, j, k〉 and a > 0,
〈j, a, b+ 1〉 if M(i) = 〈B, j〉,
〈j, a, 0〉 if M(i) = 〈B, j, k〉 and b = 0,
〈k, a, b− 1〉 if M(i) = 〈B, j, k〉 and b > 0.

We will use iterative applications of the processor M̄ and adopt the
power notation de�ned as M̄0(〈i, a, b〉) = 〈i, a, b〉 and M̄n+1(〈i, a, b〉) =
M̄(M̄n(〈i, a, b〉)). We consider M̄n(〈i, a, b〉) to be unde�ned if M̄m(〈i, a, b〉)
is a halting con�guration for some m < n.

De�nition 2.6. We say that M halts if it halts on the 〈0, 0〉 input, that is,
if M̄n(〈q1, 0, 0〉) is a halting con�guration for some n > 0.

It is proved in [25] that Minsky machines are equivalent to Turing ma-
chines in the following sense. Given a Minsky machineM (or Turing machine
T ), we can algorithmically construct a Turing machine T (M) (or Minsky
machine M(T )) which halts if and only if the original machine halts. This
means that the halting problem for Minsky machines is as di�cult as for Tur-
ing machines; that is, undecidable. Thus a new path opens for proving the
undecidability of algebraic problems by interpreting Minsky machines. For
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example this route was taken in [16] to prove the undecidability of various
kinds of word problems.

In the rest of this chapter we are going to prove Theorem 2.2 in the
following way. For any Minsky machineM we de�ne an algebra A(M) with
two special elements r, w ∈ A(M) such that A(M) will have a partial near-
unanimity term on A(M) \ {r, w} if and only if M halts. This is clearly
enough since the halting problem for Minsky machines is undecidable.

By maj(x, y, z) we denote the majority element of {x, y, z} if it exists, i.e.,
when |{x, y, z}| ≤ 2. We advise the reader to skim through this de�nition
and return to it when reading the subsequent proofs.

De�nition 2.7. Let C = {0, A,B, 1}. We de�ne the algebra A(M) on the
set A(M) = S × C ∪ {p, r, w} with the following operations

I(x) =


w if x ∈ {r, w},
〈q1, 0〉 if x = p,

r if x ∈ S × C;

M(x, y, z, u) =



w if w ∈ {y, z, u} or r ∈ {y, z, u},
maj(y, z, u) else if maj(y, z, u) 6= p,

p else if maj(y, z, u) = p and

x ∈ {q0} × C ∪ {r},
w otherwise;

for each command i : inc R, j of M the operation

Fi(x, y) =


〈j, c〉 if x = 〈i, c〉 and y = p,

〈j, R〉 if x = 〈i, 0〉 and y ∈ S × C,

r if x = r and y = p,

w otherwise;

and for each command i : dec R, j, k of M the operations

Gi(x, y) =


〈k, c〉 if x = 〈i, c〉 and y = p,

〈k, 1〉 if x = 〈i, R〉 and y ∈ S × C,

r if x = r and y = p,

w otherwise;

Hi(x) =


〈j, c〉 if x = 〈i, c〉 and c 6= R,

r if x = r,

w otherwise.

We will investigate this algebra in detail. The �rst important property
of A(M) is that it almost has an absorbing element.
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De�nition 2.8. Let A be a set, and f : An → A. An element w ∈ A is
absorbing for f if f(ā) = w whenever ā ∈ An and w ∈ {a1, . . . , an}.

Proposition 2.9. The element w of A(M) is absorbing for the operations

I, Fi, Gi and Hi.

Proof. One only has to check the de�nition of A(M). In the de�nition of I
this is stated explicitly. In the de�nition of Fi, Gi andHi only the `otherwise'
case can be applied.

Note that w is not an absorbing element for the operationM , but almost,
except in the �rst variable. Combining this with the previous proposition
one can see that A(M) cannot have a partial near-unanimity term on a
nontrivial subset that includes w. For example plugging in w in the right-
most variable of a term always yields w. We will use the element w to indicate
some irregularity of a term when plugging in near-unanimous evaluations.

De�nition 2.10. Let x̄ = (x1, x2, . . . ) be a �xed set of variables, and p̄ be
the constant p evaluation. For each element e ∈ A(M) let p̄|xn=e be the
evaluation xn = e and xm = p if m 6= n. We say that a term t(x̄) is regular
if t(p̄) 6= w and t(p̄|xn=e) 6= w for each n ∈ N and e ∈ S × C.

We ask the reader to check that the terms x1, I(x1) and Fq1(I(x1), x2)
are regular, while the terms I(I(x1)), Fq1(x1, x2) and M(x1, x2, x3, x4) are
not.

De�nition 2.11. We de�ne slim terms inductively. The term I(xn) is slim
for every variable xn. If t is slim, then so are Fi(t, y), Gi(t, y) and Hi(t) for
any state i ∈ S and variable y ∈ x̄.

Proposition 2.12. Every regular term t that does not contain the operation

M is either slim or a variable. Moreover, if t is regular and slim then there

exists an evaluation p̄|xn=e for some xn and e ∈ S×C, such that t(p̄|xn=e) =
r.

Proof. We use induction on the complexity of t. If t is a variable then the
statement is void, because variables are not slim by de�nition.

Suppose that t(x̄) = I(t1(x̄)). Because of Proposition 2.9 we know that
t1 must be regular, as well. If t1 is not a variable, then according to our as-
sumption we have an evaluation p̄|xn=e such that t1(p̄|xn=e) = r. This shows
that t(p̄|xn=e) = w, which is a contradiction. Thus t1 must be a variable,
in which case the statement and the existence of the required evaluation are
satis�ed.

Now suppose that t(x̄) = Fi(t1(x̄), t2(x̄)) for some i ∈ S. Again, both
t1 and t2 must be regular. If t1 is a variable then t(p̄) = Fi(p, t2(p̄)) = w.
Thus t1 cannot be a variable. So there exists an evaluation p̄|xn=e such that
t1(p̄|xn=e) = r, which forces t2(p̄|xn=e) = p. But p is not in the range of any
of the operations I, Fi, Gi and Hi; thus t2 must be a variable. In this case
the statement is clear.
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The same argument works if the topmost operation of t is either Gi or
Hi.

Regular slim terms play a very important role in the proof; they essen-
tially encode the computation of the Minsky machine M. To see how this
works, we describe the construction of a partial near-unanimity term from a
halting computation.

Lemma 2.13. If M halts, then there exists a partial near-unanimity term

on A(M) \ {r, w}.

Proof. We use the processor M̄n from De�nition 2.5. Assume that M halts
in n steps, that is, M̄n(〈q1, 0, 0〉) = 〈q0,−,−〉. For each natural number
m ≤ n we de�ne im, am and bm by

M̄m(〈q1, 0, 0〉) = 〈im, am, bm〉.

We are going to build a slim term of depth n+1 by induction. Put t0 = I(x).
Now suppose that tm is already de�ned. At step m the machine is in state
im. There is a unique command for each state.

If the command for state im is of the form i : inc R, j, then put tm+1 =
Fim(tm, ym) where ym is a new variable. Now assume that the command
for state im is of the form i : dec R, j, k where R = A. If am = 0 then put
tm+1 = Him(tm). If am 6= 0 then let m′ < m be the largest natural number
such that am′ < am, and put tm+1 = Gim(tm, ym′). The case when R = B
is handled similarly using bm and bm′ instead of am and am′ .

Finally, put t = M(tn, z1, z2, z3) where z1, z2 and z3 are new variables.
We claim that tn is a regular slim term and t is a partial near-unanimity
term on A(M) \ {r, w}.

Claim 1. The term tn is slim.

This follows from the construction. We have used only variables in the
second coordinates of Fi and Gi.

Claim 2. No variable of t has more than two occurrences. If a variable has

exactly two occurrences, then it is ym′ for some m and the two occurrences

are at tm′+1 = Fim′ (tm′ , ym′) and tm+1 = Gim(tm, ym′). If a variable ym has

exactly one occurrence then it is at tm+1 = Fim(tm, ym).

The variables x, z1, z2 and z3 have single occurrences. At each Fi we
always introduced a new variable. Now consider the case when tm+1 =
Gim(tm, ym′). From the de�nition we know that am′ < am and am ≤
am′+1, . . . , am (assuming that R = A). Since am′ < am ≤ am′+1 and the
machine cannot increase a register by more than one, am′ +1 = am = am′+1.
This implies that the command for state im′ is of the form i : inc R, j and
R = A. On the other hand, the command for state im is of the form
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i : dec A, j, k and am 6= 0, therefore am+1 = am − 1. To summarize, for
each pair 〈m′,m〉

am′ + 1 = am′+1 = am = am+1 + 1, and
am ≤ am′+1, . . . , am.

Note that this condition is symmetric. If m′ is in pair with some m then m
is the least natural number such that m′ < m and am′+1 > am+1. Therefore,
ym′ has at most two occurrences.

Claim 3. tm(p̄) = 〈im, 0〉 for all m ≤ n

We prove by induction on m. For m = 0 this is true by de�nition:
I(p) = 〈q1, 0〉. Now we prove it for m+1. By de�nition tm+1 is Fim(tm, ym),
Him(tm) or Gim(tm, ym′). Therefore tm+1(p̄) is Fim(〈im, 0〉, p), Him(〈im, 0〉)
or Gim(〈im, 0〉, p). Looking up the de�nition of these operations we conclude
that tm+1(p̄) = 〈im+1, 0〉.

Claim 4. tm(p̄|x=e) = r for all m ≤ n and e ∈ S × C.

This is clear, using induction.

Claim 5. Let h < n and e ∈ S × C be �xed and assume that yh has exactly

one occurrence in tn. Let R be the register manipulated in the command for

state ih. Then

tm(p̄|yh=e) =

{
〈im, 0〉 if 0 ≤ m ≤ h,

〈im, R〉 if h < m ≤ n.

Without loss of generality we can assume that R = A. By Claim 2, the
single occurrence of yh is at th+1 = Fih(th, yh). Therefore, if m ≤ h then
tm(p̄|yh=e) = tm(p̄) = 〈im, 0〉. We use induction on m to prove the other
case. For the base of the induction we have th+1(p̄|yh=e) = Fih(〈ih, 0〉, e) =
〈ih+1, A〉.

Now consider the induction step from m to m+ 1. Assume that tm+1 =
Fim(tm, ym). Since yh has a single occurrence, yh 6= ym, and therefore
tm+1(p̄|yh=e) = Fim(〈im, A〉, p) = 〈im+1, A〉. A similar argument works when
tm+1 = Gim(tm, ym′).

Now assume that tm+1 = Him(tm). From the proof of Claim 2 we can
see that ah < ah+1, . . . , an. Therefore, am 6= 0. By the de�nition of tm+1

we know that either am or bm must be zero. Thus it is register B which is
manipulated in the command for state im. This implies that tm+1(p̄|yh=e) =
Him(〈im, A〉) = 〈im+1, A〉.

Claim 6. Let h < n and e ∈ S × C be �xed and assume that yh′ has

exactly two occurrences in tn as described in Claim 2. Let R be the register

manipulated in the commands for states ih′ and ih. Then

tm(p̄|yh′=e) =


〈im, 0〉 if 0 ≤ m ≤ h′,

〈im, R〉 if h′ < m ≤ h,

〈im, 1〉 if h < m ≤ n.
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Without loss of generality we can assume that R = A. The same ar-
gument works for the �rst two cases as in the previous claim, but using h′

instead of h.
We prove the third case by induction on m. For the base of the induc-

tion we have th+1 = Gih(th, yh′). Hence th+1(p̄|yh′=e) = Gih(〈ih, A〉, e) =
〈ih+1, 1〉. The induction step is now easy as there are no other occurrences
of yh′ along the term tn. Therefore, we always calculate Fim(〈im, 1〉, p),
Gim(〈im, 1〉, p), or Him(〈im, 1〉), which all yield 〈im+1, 1〉.

Claim 7. The term tn is regular. Moreover, tn(p̄|u=e) ∈ {q0} × C ∪ {r} for

all variables u and all e ∈ A(M) \ {r, w}.

Take any element e ∈ S × C. By Claims 3 and 4 we have tn(p̄) =
〈q0, 0〉 and tn(p̄|x=e) = r, respectively. Now take a variable yh. If yh has no
occurrence in tn then tn(p̄|yh=e) = tn(p̄) = 〈q0, 0〉. Otherwise yh has one or
two occurrences by Claim 2. Then by Claims 5 and 6 we have tn(p̄|y=e) ∈
{q0} × C.

Claim 8. t is a partial near-unanimity term on A(M) \ {r, w}.

Take a near-unanimous evaluation ā on A(M) \ {r, w}. If the majority
element is not p, then t(ā) = M(tn(ā), z1, z2, z3) = maj(z1, z2, z3). If the
majority element is p then tn(ā) ∈ {q0} × C ∪ {r} by Claim 7, and hence
t(ā) = p. Therefore, t is a partial near-unanimity term on A(M)\{r, w}.

We have seen how to encode the halting computation into the regular
slim term tn. Our goal now is the reverse; to show that the computation of
M can be recovered from a regular slim term.

Lemma 2.14. Let tn be a regular slim term of depth n + 1. Then tn(p̄) =
〈in, 0〉 where in is the state of the machine M after the �rst n steps.

Proof. We want to show that the term tn behaves the same way as the one
in the proof of the previous lemma. Denote by tm the unique subterm of
tn of depth m + 1. That is, t0 = I(−), and tm+1 is Fi(tm,−), Gi(tm,−) or
Hi(tm) for some i ∈ S. Since tn is regular and the element w is absorbing,
tm(p̄|u=e) 6= w for all m ≤ n, e ∈ S × C and all variables u of tn.

Claim 1. tm(p̄) ∈ S × {0} for all m < n.

This is clear, using induction.

Claim 2. Let x be the variable used in t0. Then x has no other occurrence

in tn. Moreover, tm(p̄|x=e) = r for all m ≤ n and e ∈ S × C.

We use induction on m. For m = 0 we have t0(p̄|x=e) = I(e) = r.
For the induction step from m to m + 1 assume that tm(p̄|x=e) = r. Thus
tm+1(p̄|x=e) is Fi(r, y), Gi(r, y) or Hi(r) for some i ∈ S and some variable y.
We know that this value is not w. Looking up the de�nition of Fi, Gi and
Hi, we can see that the only choice is when the result is r (and y = p for Fi

and Gi). This completes the induction step and proves that x 6= y when the
operation is Fi or Gi.

31



Claim 3. Assume that a variable y 6= x has exactly one occurrence in tn.
Then the occurrence is at tm+1 = Fi(tm, y) for some m < n and i ∈ S.
Moreover, there exists no h > m such that th+1 = Hj(th) and the command

for j manipulates the same register as the one for i.

Letm be the least natural number such that tm+1 has an occurrence of y.
Then tm+1 = Fi(tm, y) or tm+1 = Gi(tm, y) for some i ∈ S. Take e ∈ S ×C,
and consider tm+1(p̄|y=e). By Claim 1, tm(p̄|y=e) ∈ S × {0}. Checking
the de�nition of Gi we see that Gi(tm(p̄|y=e), e) = w, a contradiction. So
tm+1 = Fi(tm, y). Moreover, tm+1(p̄|y=e) ∈ S × {R} where R is the register
manipulated by the command for i. Now we show that th(p̄|y=e) ∈ S × {R}
for all h > m by induction. Form+1 we already have this. For the induction
step consider a = th+1(p̄|y=e). By de�nition a is Fj(〈−, R〉, p), Gj(〈−, R〉, p)
or Hj(〈−, R〉) for some j ∈ S and a 6= w. In the �rst two cases this shows
that a ∈ S × {R}. On the other hand, when a = Hj(〈−, R〉) 6= w then the
command for state j cannot manipulate the register R. This concludes the
proof of this claim.

Claim 4. Assume that a variable y 6= x has at least two occurrences in tn.
Then there exist m′ < m such that tm′+1 = Fi(tm′ , y), tm+1 = Gj(tm, y) for

some i, j ∈ S, the commands for i and j manipulate the same register R,
and y has no other occurrences than these two. Moreover, there exists no

m′ < h < m such that th+1 = Hk(th) and the command for k manipulates

the register R.

Let m′ and m be the least natural numbers such that tm′+1 has exactly
one and tm+1 has exactly two occurrences of y. The term tm has exactly one
occurrence of y, so we can apply the previous claim. This proves half of the
claim. It remains to be shown that tm+1 = Gj(tm, y) for some j ∈ S, that
the command for j manipulates the register R, and that there are no other
occurrences of y.

Fix e ∈ S × C. From the proof of the previous claim we know that
tm(p̄|y=e) ∈ S × {R} where R is the register manipulated by the command
for i. Consider a = tm+1(p̄|y=e). This element is either Fj(〈−, R〉, e) or
Gj(〈−, R〉, e) for some j. Since a 6= w, we must have tm+1 = Gj(tm, y), and
the command for j must manipulate R. Therefore, tm+1(p̄|y=e) ∈ S × {1}.

Finally, we show that th(p̄|y=e) ∈ S×{1} for all h > m by induction. We
have already the basis of the induction. To show the induction step, consider
th+1. If th+1 = Hk(th) for some k then we get th+1(p̄|y=e) ∈ S × {1} by the
de�nition of Hk. Now assume that th+1 = Fk(th, z). Since th+1(p̄|y=e) 6= w
we must have z 6= y and th+1(p̄|y=e) ∈ S × {1}. The same argument works
for Gk, as well.

Claim 5. Let im, am and bm be de�ned by M̄m(〈q1, 0, 0〉) = 〈im, am, bm〉.
Then the following hold for all 0 ≤ m < n.

(1) If the command of M for im is of the form i : inc R, j, then tm+1 =
Fim(tm,−).
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(2) If the command for im is of the form i : dec R, j, k, and if am 6= 0 for

R = A while bm 6= 0 for R = B, then tm+1 = Gim(tm,−).

(3) If the command for im is of the form i : dec R, j, k, and if am = 0 for

R = A while bm = 0 for R = B, then tm+1 = Him(tm,−).

Moreover, tm(p̄) = 〈im, 0〉 for all 0 ≤ m ≤ n.

We prove this by induction on m. For m = 0 we have t0(p̄) = I(p) =
〈q1, 0〉 = 〈i0, 0〉. For the induction step assume that (1)�(3) hold for all
m′ < m, a condition which is void if m = 0, and tm(p̄) = 〈im, 0〉. We have
to show that (1)�(3) hold for m and tm+1(p̄) = 〈im+1, 0〉.

Assume that tm+1 = Fi(tm, y) for some i ∈ S and some variable y. We
have to show that i = im and tm+1(p̄) = 〈im+1, 0〉. Since the operation
Fi is de�ned, the command for state i is i : inc R, j for some R ∈ {A,B}
and j ∈ S. From the induction hypothesis, tm(p̄) = 〈im, 0〉. Consider the
element e = tm+1(p̄) = Fi(〈im, 0〉, p). Since e 6= w, we must have i = im and
e = 〈j, 0〉. As im = i and the command is i : inc R, j, we have im+1 = j. So,
tm+1(p̄) = 〈im+1, 0〉.

Assume that tm+1 = Gi(tm, y) for some i ∈ S and variable y. We have
to show that i = im and tm+1(p̄) = 〈im+1, 0〉. Since the operation Gi is
de�ned, the command for state i is i : dec R, j, k for some R ∈ {A,B} and
j, k ∈ S. Without loss of generality we can assume that R = A. Consider
e = tm+1(p̄) = Gi(〈im, 0〉, p). Since e 6= w, we must have i = im and
e = 〈k, 0〉. What remains to be shown is that im+1 = k. We know that im+1

is either j or k depending on whether am = 0 or am 6= 0. We claim that
am 6= 0. By the de�nition of the Minsky machine,

am = |{h < m : M has increased register A at step h }|
− |{h < m : M has decreased register A at step h }|.

Now using the induction hypothesis we get that am = |S+| − |S−| where

S+ = {h < m : th+1 = Fih(th,−) and
the command for ih manipulates register A }, and

S− = {h < m : th+1 = Gih(th,−) and
the command for ih manipulates register A }.

Take a number h from the second set S−, so th+1 = Gih(th, z) for some
variable z, and the command for ih manipulates register A. By Claim 2, 3
and 4, the variable z has exactly two occurrences; the other being at th′+1 =
Fih′ (t

′
h, z) for some h′ < h. Moreover, the command for ih′ manipulates the

same register A. Thus h′ belongs to the �rst set S+. This only shows that
am ≥ 0. But the same argument works for tm+1 = Gi(tm, y), showing that
there exists an m′ < m which belongs to S+, while m 6∈ S−. Therefore,
am > 0 and im+1 = k.

Finally, assume that tm+1 = Hi(tm) for some i ∈ S. We have to show
that i = im and tm+1(p̄) = 〈im+1, 0〉. Since the operation Hi is de�ned,
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the command for state i is i : dec R, j, k for some R ∈ {A,B} and j, k ∈
S. Without loss of generality we can assume that R = A. Consider e =
tm+1(p̄) = Hi(〈im, 0〉). Since e 6= w, we must have i = im and e = 〈j, 0〉.
What remains to be shown is that im+1 = j. We know that im+1 is either
j or k depending on whether am = 0 or am 6= 0. To get a contradiction,
suppose that am 6= 0, i.e., the set S+, de�ned in the previous subsection, has
more elements than S−. We know that each element of S− is in pair with a
unique element of S+. So there exists an h < m such that th+1 = Fi(th, z) for
some variable z, the command for i manipulates register A, and h is not in
S−. Therefore, z has exactly one occurrence in tm. If z has two occurrences
then the other one must appear after tm+1. In any case, either by Claim 3 or
4, the command for i at tm+1 = Hi(tm) cannot manipulate register A. But
according to our assumption it does, which is a contradiction. This shows
that am = 0, therefore im+1 = j.

This �nishes the proof of the last claim, which includes the statement
tn(p̄) = 〈in, 0〉 of the lemma.

The previous two lemmas give the connection between regular slim terms
and halting computations. What remains to be shown is that a regular
slim term can be found as a subterm of a partial near-unanimity term on
A(M)\{r, w}, or at least as a subterm of a �minimal� partial near-unanimity
term.

De�nition 2.15. Two terms t1 and t2 are p-equivalent i� t1(p̄) = t2(p̄) and
t1(p̄|xn=e) = t2(p̄|xn=e) for each n ∈ N and e ∈ S × C. A term is p-minimal

i� there is no p-equivalent term of smaller complexity.

Lemma 2.16. Let t be a regular p-minimal term which contains the opera-

tion M . Then A(M) halts.

Proof. We use induction on the complexity of t. If t = Fi(t1, t2) then both
t1 and t2 must be regular (and p-minimal) by Proposition 2.9. So at least
one of them contains the operation M and by induction we are done. The
same argument works for the operations Gi, Hi and I, as well.

Now suppose that t = M(t1, t2, t3, t4). If t2, t3 or t4 is not regular then we
have some near p-unanimous evaluation f̄ such that w ∈ {t2(f̄), t3(f̄), t4(f̄)}.
This forces t(f̄) = w, which is a contradiction. So t2, t3 and t4 are regular.
If one of them contains the operationM , then we use induction on that sub-
term. So assume thatM does not occur in t2, t3 and t4. By Proposition 2.12,
each of them is either a slim term or a variable. If tk is slim (k ∈ {2, 3, 4}),
then we have an evaluation p̄|xn=e such that tk(p̄|xn=e) = r. This forces a
contradiction t(p̄|xn=e) = w. Thus t2, t3 and t4 must be variables. If two of
them are the same variable y then it is not hard to check that t is p-equivalent
to y, a contradiction to the p-minimality. Thus the terms t2, t3 and t4 are
distinct variables. If t1 is not regular then we have an evaluation p̄|xn=e such
that t1(p̄|xn=e) = w. But this forces t(p̄|xn=e) = w, a contradiction. So t1
must be regular. If t1 contains M then we use the induction. If t1 does not
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contain M then by Proposition 2.12 it is either a slim term or a variable. It
cannot be a variable because t(p̄) 6= w. So t1 is regular and slim term. Now
by Lemma 2.14 the value t1(p̄) contains the last state of the correct piece
of the computation. But t(p̄) 6= w, which proves that we have reached the
halting state.

Theorem 2.17. Let M be a Minsky machine. The algebra A(M) has a

partial near-unanimity term on the set A(M) \ {r, w} i� M halts.

Proof. Suppose that t is a partial near-unanimity term on A(M) \ {r, w}.
Then t is regular. Let t′ be a term p-equivalent to t and p-minimal. Then
t′ is not a variable; moreover, t′(p̄) = p implies that the topmost operation
of t′ is M . Now by Lemma 2.16, M halts. The other direction is proved in
Lemma 2.13.

This �nishes the proof of Theorem 2.2, as it is undecidable of a Minsky
machine if it halts.
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3 The decidability of a near-unanimity term

Let ω and ω+ be the set of all �nite and countable cardinals, respectively.
For a nonempty set A we denote by OA the set of all operations on A. In
general we do not assume that the underlying set A is �nite. For F ⊆ OA

and n ∈ ω put F (n) = F ∩ AAn
, which is the set of all n-ary operations

contained in F . Binary operations will play a crucial role in our arguments,
therefore we put BA = O(2)

A . The clone generated by a set F ⊆ OA will be
denoted by 〈F〉. All indices in this chapter start from zero.

An operation f ∈ O(n)
A is a near-unanimity operation if

f(y, x, . . . , x) = f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) = x

for all x, y ∈ A. It is customary to assume that n ≥ 3, but we will not make
this restriction to avoid considering special cases in some of our arguments.
However, this does not weaken our results, because no operation of arity
less than three can satisfy this de�nition whenever the underlying set has at
least two elements. The problem of deciding whether a �nite algebra has a
near-unanimity term operation is called the near-unanimity problem.

Instead of working with operations and their composition, we introduce
an equivalence relation on the set of operations in such a way that

(1) the near-unanimity operations form an equivalence class of the relation,

(2) a new notion of composition can be introduced on the equivalence
classes, and

(3) it is possible to algorithmically compute the closure of equivalence
classes under this new notion of composition.

We start the proof with the study of the binary operations that arise as
f(x, . . . , x, y, x, . . . , x) from another operation f ∈ OA.

De�nition 3.1. For f ∈ O(n)
A and i ∈ ω, the ith polymer of f is f |i ∈ BA

de�ned as

f |i(x, y) =

{
f(x, . . . , x,

ith
^
y , x, . . . , x) if i < n,

f(x, . . . , x) if i ≥ n,

where y occurs at the ith coordinate of f in the �rst case. The collection of
polymers of f together with their multiplicities is the characteristic function

of f , which is formally de�ned as the map χf : BA → ω+ where

χf (b) = |{ i ∈ ω : f |i = b }| .

By the set of characteristic functions on a nonempty set A we mean the
set XA = {χf : f ∈ OA }. Note that not every mapping of BA to ω+

is a characteristic function of some operation. In the following lemma we
characterize the ones that are.
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Lemma 3.2. A mapping χ : BA → ω+ is a characteristic function of some

operation if and only if

(1) there exists a unique element b ∈ BA such that χ(b) = ω,

(2) there are only �nitely many c ∈ BA such that χ(c) 6= 0, and

(3) c(x, x) ≈ b(x, y) whenever χ(c) 6= 0 and χ(b) = ω.

Proof. To show that the given list of conditions are necessary, take an ar-
bitrary operation f ∈ O(n)

A . Put b = f |n. By De�nition 3.1, b(x, y) ≈
f(x, . . . , x) and f |i = b for all i ≥ n, which proves that χ(b) = ω. Moreover,
for every c ∈ BA other than b, χ(c) = |{ i < n : f |i = c }| is �nite, proving
items (1) and (2). Finally, if χ(c) 6= 0, then c = f |i for some i ∈ ω, and
c(x, x) ≈ f(x, . . . , x) ≈ b(x, y).

To show the other direction, take a mapping χ : BA → ω+ satisfying
items (1)�(3). Let b ∈ BA be the unique element for which χ(b) = ω, and
put C = { c ∈ BA : χ(c) 6∈ {0, ω} }. By conditions (1) and (2), the set C is
�nite, and n =

∑
c∈C χ(c) is a �nite number. Consequently, we can choose

a �nite list ξ0, . . . , ξn−1 ∈ BA of elements such that {ξ0, . . . , ξn−1} = C and
χ(c) = |{ i < n : ξi = c }| for all c ∈ C. Because of condition (3), there exists

an operation f ∈ O(n+3)
A that satis�es the following list of identities:

f(y, x, x, . . . , x, x, x, x, x) ≈ ξ0(x, y),
f(x, y, x, . . . , x, x, x, x, x) ≈ ξ1(x, y),

...

f(x, x, x, . . . , x, y, x, x, x) ≈ ξn−1(x, y),
f(x, x, x, . . . , x, x, y, x, x) ≈ b(x, y),
f(x, x, x, . . . , x, x, x, y, x) ≈ b(x, y),
f(x, x, x, . . . , x, x, x, x, y) ≈ b(x, y),
f(x, x, x, . . . , x, x, x, x, x) ≈ b(x, y).

Clearly, f |i = ξi for all i < n, and f |n = f |n+1 = f |n+2 = f |n+3 = · · · = b.
Therefore, χf = χ, which concludes the proof.

We leave it to the reader to prove the following result that characterizes
near-unanimity operations by their characteristic functions.

Lemma 3.3. f ∈ OA is a near-unanimity operation if and only if χf = χnu

where χnu ∈ XA is de�ned as

χnu(b) =

{
ω if b(x, y) ≈ x,

0 otherwise.

Given a set G ⊆ OA of operations, we de�ne X(G) = {χf : f ∈ G }.
By the last lemma, the kernel of the operator f 7→ χf satis�es our goal (1)
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stated at the beginning of the chapter. To establish goal (2), we introduce
the notions of composition for operations and characteristic functions, and
consequently show that they correspond to one another under taking the
characteristic functions of the operations. If for a set G of operations we can
show that the corresponding set {χg : g ∈ G } of characteristic functions
is closed under this new notion of composition and does not include χnu,
then we will be able to conclude that 〈G〉 does not contain a near-unanimity
operation, even if G is not a clone. First, we need the following de�nition.

De�nition 3.4. By an extension of g ∈ O(n)
A we mean an operation g′ ∈

O(m)
A satisfying

g′(x0, . . . , xm−1) ≈ g(xσ(0), . . . , xσ(n−1)),

where σ is an arbitrary injection of {0, . . . , n− 1} into {0, . . . ,m− 1}. By a

composition of f ∈ O(n)
A with extensions of g0, . . . , gn−1 ∈ OA we mean an op-

eration of the form f(g′0, . . . , g
′
n−1) where g

′
0, . . . , g

′
n−1 ∈ O

(m)
A are extensions

of g0, . . . , gn−1, respectively, and are of the same arity m.

Clearly, the extensions of g are exactly the operations that can be ob-
tained from g by permuting the variables and introducing dummy variables.
As an example, all projections are extensions of the unary projection. It is
easy to see that if g′ is an extension of g, then χg′ = χg.

The full meaning of the following de�nition well be revealed in the proof
of Lemma 3.6, but �rst we motivate it by a simple example. Take operations
f ∈ O(2)

A and g0, g1 ∈ O(m)
A . We would like to describe the characteristic

function of f(g0, g1) via the characteristic functions of f , g0 and g1. Clearly,
the ith polymer of f(g0, g1) is f(g0|i, g1|i), which shows that χf(g0,g1) depends
not only on χf but also on f . Furthermore, if g′1 is anm-ary extensions of g1,
then χg1 = χg′1

, but in general g1|i 6= g′1|i, and therefore χf(g0,g1) 6= χf(g0,g′1).
This shows that besides χg0 and χg1 we also need to know which �variables�
of χg0 correspond to the �variables� of χg1 . What we need is an assignment,
denoted as a map µ in the following de�nition, that with multiplicities assigns
the polymers of g0 to that of g1.

De�nition 3.5. We say that χ ∈ XA is a composition of f ∈ O(n)
A with

χ0, . . . , χn−1 ∈ XA if there exists a mapping µ : (BA)n → ω+ such that

χ(c) =
∑

b̄∈(BA)n, f(b̄)=c

µ(b̄)

and

χi(c) =
∑

b̄∈(BA)n, bi=c

µ(b̄)

for all c ∈ BA and i < n.
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We introduce the following operators on OA and XA. Given F ,G ⊆ OA,
we denote by CF (G) the set of all possible compositions of operations f ∈
F (n) with extensions of g0, . . . , gn−1 ∈ G. We will use the same symbol for
the analogous operator for characteristic functions: given F ⊆ OA and U ⊆
XA, we denote by CF (U) the set of all possible compositions of operations
f ∈ F (n), for some n ∈ ω, with characteristic functions χ0, . . . , χn−1 ∈ U .

Lemma 3.6. XCF (G) = CFX(G) for all F ,G ⊆ OA.

Proof. To prove the inclusion ⊆, take f ∈ F (n) and g0, . . . , gn−1 ∈ G, let
g′0, . . . , g

′
n−1 ∈ O(m)

A be extensions of g0, . . . , gn−1, respectively, of the same

arity m ∈ ω, and put h = f(g′0, . . . , g
′
n−1) ∈ O

(m)
A . We need to show that χh

is a composition of f with χg0 , . . . , χgn−1 . De�ne µ : (BA)n → ω+ as

µ(b̄) =
∣∣{ i ∈ ω : 〈g′0|i, . . . , g′n−1|i〉 = b̄

}∣∣ ,
which describes how many times the tuple b̄ ∈ (BA)n of binary operations
appear as the polymers of g′0, . . . , g

′
n−1 at the same coordinate i.

We check De�nition 3.5 now. For each element c ∈ BA,∑
b̄∈(BA)n, f(b̄)=c

µ(b̄) =
∣∣{ i ∈ ω : f(g′0|i, . . . , g′n−1|i) = c

}∣∣
=
∣∣{ i ∈ ω : h|i = c

}∣∣ = χh(c).

On the other hand, for each j < n and c ∈ BA,∑
b̄∈(BA)n, bj=c

µ(b̄) =
∣∣{ i ∈ ω : g′j |i = c

}∣∣ = χg′j
(c).

This shows that χh is a composition of f with χg′0
, . . . , χg′n−1

. Moreover,
since g′j is an extension of gj , χgj = χg′j

for all j < n. This completes the

proof of XCF (G) ⊆ CFX(G).
To prove the other inclusion, take an arbitrary χ ∈ CFX(G). Then there

exist f ∈ F (n), operations g0, . . . , gn−1 ∈ G of arities m0, . . . ,mn−1, respec-
tively, and µ : (BA)n → ω+ such that

χ(c) =
∑

b̄∈(BA)n, f(b̄)=c

µ(b̄) (3.6a)

and

χgj (c) =
∑

b̄∈(BA)n, bj=c

µ(b̄) (3.6b)

for all c ∈ BA and j < n. We will argue that χ is the characteristic function
of a composition of f with extensions of g0, . . . , gn−1.
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Using equation (3.6a) we obtain∑
b̄∈(BA)n

µ(b̄) =
∑
c∈BA

χ(c) = ω,

where the second equality holds because χ is a characteristic function. Con-
sequently, we can choose a mapping ξ : ω → (BA)n such that

µ(b̄) =
∣∣{ i ∈ ω : ξ(i) = b̄

}∣∣
for all b̄ ∈ (BA)n. Now, using equation (3.6b), we get that∣∣{ i ∈ ω : gj |i = c

}∣∣ = χgj (c) =
∑

b̄∈(BA)n, bj=c

µ(b̄) =
∣∣{ i ∈ ω : ξ(i)j = c

}∣∣
for all j < n and c ∈ BA. The cardinalities of the two sets on the two sides
are equal, therefore, for every j < n we can choose a permutation σj : ω → ω
such that

gj |i = ξ(σj(i))j

for all i ∈ ω. Put m = max{σj(i) : j < n, i < mj }. Now, for all j < n,
the restriction of σj to the set {0, . . . ,mj − 1} is an injection into the set

{0, . . . ,m− 1}. De�ne the operations g′0, . . . , g′n−1 ∈ O
(m)
A as

g′j(x0, . . . , xm−1) ≈ gj(xσj(0), . . . , xσj(mj−1)).

Clearly, each g′j is an extension of gj . To complete the proof, we need to
show that the characteristic function of f(g′0, . . . , g

′
n−1) equals χ.

Observe that

g′j |i =

{
gj |σ−1

j (i) if σ−1
j (i) < mj ,

gj(x, . . . , x) otherwise.

As a result, g′j |i = gj |σ−1
j (i) for all i ∈ ω, and therefore

g′j |i = gj |σ−1
j (i) = ξ(σjσ

−1
j (i))j = ξ(i)j

for all i ∈ ω and j < n. Then, for an arbitrary element c ∈ BA,

χf(g′0,...,g′n−1)(c) =
∣∣{ i ∈ ω : f(g′0, . . . , g

′
n−1)|i = c

}∣∣
=
∣∣{ i ∈ ω : f(g′0|i, . . . , g′n−1|i) = c

}∣∣
=
∣∣{ i ∈ ω : f(ξ(i)0, . . . , ξ(i)n−1) = c

}∣∣
=
∣∣{ i ∈ ω : f(b̄) = c where b̄ = ξ(i)

}∣∣
=

∑
b̄∈(BA)n, f(b̄)=c

µ(b̄)

= χ(c).
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The following lemma turns the near unanimity problem into a prob-
lem about characteristic functions. We will use the power notation for
the composition operator. For F ,G ⊆ OA we de�ne C0

F (G) = G, and
Cn+1
F (G) = CFCn

F (G) for all n ∈ ω. We use the same power notation for
the composition of characteristic functions, as well.

Lemma 3.7. Let F ⊆ OA and G ⊆ 〈F〉, and assume that G contains an

idempotent operation. Then 〈F〉 contains a near-unanimity operation if and

only if χnu ∈
⋃

n∈ω Cn
FX(G).

Proof. By Lemma 3.6,
⋃

n∈ω Cn
FX(G) = X

(⋃
n∈ω Cn

F (G)
)
. Consequently, by

Lemma 3.3, it is enough to show that 〈F〉 contains a near-unanimity op-
eration if and only if

⋃
n∈ω Cn

F (G) does. One direction is trivial because⋃
n∈ω Cn

F (G) ⊆ 〈F〉. For the other direction assume that f ∈ 〈F〉(k) is a
near-unanimity operation and g ∈ G(m) is an arbitrary idempotent opera-
tion. We de�ne h ∈ 〈F〉(km) as

h(x0, . . . , xkm−1) = f(g(x0, . . . , xm−1), . . . , g(xkm−m, . . . , xkm−1)).

Clearly, h is a near-unanimity operation, and h ∈
⋃

n∈ω Cn
F (G).

If G is the set of all projections on the set A and F ⊆ OA, then⋃
n∈ω Cn

F (G) = 〈F〉, and X(G) = {χid}, where χid is de�ned as

χid(b) =


ω if b(x, y) ≈ x,

1 if b(x, y) ≈ y,

0 otherwise.

Thus, by the previous lemma, 〈F〉 contains a near-unanimity operation if
and only if χnu ∈

⋃
n∈ω Cn

F ({χid}). However, this condition does not seem
to be easier to check than the original one. We overcome this problem by
carefully choosing G so that the latter condition can be e�ectively tested.

De�nition 3.8. For an integer k ≥ 1 we de�ne a partial order vk on ω+ as
follows:

t0 t1
t1 + k

t1 + 2k

t1 + 3k

...

t2
t2 + k

t2 + 2k

t2 + 3k

...

· · · tk
t2k
t3k
t4k
...

tω
Acting coordinate-wise, this de�nes a partial order on XA. For a set U ⊆ XA

denote by Fk(U) the order �lter generated by U in XA, that is,

Fk(U) = {χ′ ∈ XA : (∃χ ∈ U)(∀b ∈ BA)(χ(b) vk χ
′(b)) }.
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Recall that a partially ordered set (or simply poset) is called well-ordered,
if it has no in�nite anti-chains and satis�es the descending chain condition,
i.e., contains no strictly decreasing sequence of elements. Clearly, 〈ω+;vk〉 is
well-ordered. It is known that subposets and �nite products of well-ordered
posets are well-ordered (these are elementary facts, see e.g. [17]). Moreover,
the set of order �lters of a well-ordered poset under the inclusion order
satis�es the ascending chain condition. Consequently, provided that A is
�nite, 〈XA;vk〉 is well-ordered and has no strictly increasing sequence of
order �lters. From now on A is assumed to be �nite.

Lemma 3.9. Let k ≥ 1, F ⊆ OA and U ⊆ XA. Then FkCF (U) ⊆ CFFk(U).
Consequently, CFFk(U) is an order �lter.

Proof. Take arbitrary characteristic functions χ ∈ CF (U) and χ′ ∈ XA such
that χ vk χ′. Thus χ is a composition of an operation f ∈ F (n) and
characteristic functions χ0, . . . , χn−1 ∈ U . By De�nition 3.5, there exists a
map µ : (BA)n → ω+ such that

χ(c) =
∑

b̄∈(BA)n, f(b̄)=c

µ(b̄) (3.9a)

and

χi(c) =
∑

b̄∈(BA)n, bi=c

µ(b̄) (3.9b)

for all c ∈ BA and i < n. Let D be the set of binary operations d ∈ BA

where χ(d) 6= χ′(d). Since neither 0 nor ω is comparable to any other element
under vk, for all d ∈ D, χ(d) 6∈ {0, ω} and χ′(d)− χ(d) equals to a positive
multiple of k. Using equation (3.9a), for each d ∈ D we can choose an n-tuple
b̄d ∈ (BA)n such that f(b̄d) = d and µ(b̄d) 6∈ {0, ω}. De�ne µ′ : (BA)n → ω+

as

µ′(b̄) =

{
µ(b̄) + χ′(d)− χ(d) if b̄ = b̄d for some d ∈ D,
µ(b̄) otherwise.

Clearly, µ(b̄) vk µ
′(b̄) for all b̄ ∈ (BA)n. Then by equation (3.9b), χi vk χ

′
i

for all i < n where χ′i : BA → ω+ is de�ned as

χ′i(c) =
∑

b̄∈(BA)n, bi=c

µ′(b̄)

for all c ∈ BA. On the other hand, by the choice of µ′,

χ′(c) =
∑

b̄∈(BA)n, f(b̄)=c

µ′(b̄)

for all c ∈ BA. This proves that χ′ is a composition of f and the characteristic
functions χ′0, . . . , χ

′
n−1 ∈ Fk(U) via the map µ′.

To prove the second assertion of the lemma, consider the containments
FkCFFk(U) ⊆ CFFkFk(U) = CFFk(U) ⊆ FkCFFk(U) showing that CFFk(U)
is an order �lter.
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Lemma 3.10. Let k ≥ 1, and let A, F ⊆ OA and U ⊆ XA be �nite sets.

Then the minimal elements of 〈CFFk(U);vk〉 can be e�ectively computed.

Proof. Choose an arbitrary minimal element χ ∈ CFFk(U). Then χ is a
composition of an n-ary operation f ∈ F (n) with some characteristic func-
tions χ0, . . . , χn−1 ∈ Fk(U) via a mapping µ : (BA)n → ω+. Observe in
De�nition 3.5 that f and µ uniquely determine χ and χ0, . . . , χn−1 via the
de�ning equations

χ(c) =
∑

b̄∈(BA)n, f(b̄)=c

µ(b̄) (3.10a)

and

χi(c) =
∑

b̄∈(BA)n, bi=c

µ(b̄). (3.10b)

Since A is �nite, (BA)n is �nite, and consequently the poset 〈(ω+)(BA)n
;vk〉

is well ordered. Clearly, µ is an element of this poset, so we can assume that
µ is minimal in this poset among all representations of χ.

By the �niteness of A and U ,

m = max
(
{k} ∪ {χ′(b) : χ′ ∈ U , b ∈ BA and χ′(b) 6= ω }

)
is a (�nite) natural number that depends only on k, A and U . We claim
that µ(b̄) ∈ {0, . . . ,m, ω} for all b̄ ∈ (BA)n, which is enough to conclude
our proof because then only �nitely many operations f ∈ F and �nitely
many mappings µ : (BA)n → {0, . . . ,m, ω} need to be considered to �nd all
minimal elements of CFFk(U).

To get a contradiction, assume that µ(c̄) > m and µ(c̄) 6= ω for some
tuple c̄ ∈ (BA)n. De�ne µ′ : (BA)n → ω+ as

µ′(b̄) =

{
µ(b̄) if b̄ 6= c̄,

µ(b̄)− k if b̄ = c̄,

and de�ne χ′ and χ′0, . . . , χ
′
n−1 using the de�ning equations (3.10a) and

(3.10b) for µ′, respectively. Observe that µ′(c̄) = µ(c̄)− k > m− k ≥ 0.
First we argue that χ′i ∈ Fk(U) for all i = 0, . . . , n − 1. Clearly, by

equation (3.10b), χi(b) = χ′i(b) for all b 6= ci. Moreover, either χ′i(ci) =
χi(ci) = ω or χ′i(ci) = χi(ci) − k. In the former case, χ′i = χi ∈ Fk(U).
In the latter case, χ′i(ci) = χi(ci) − k ≥ µ(c̄) − k > m − k ≥ 0, where
the �rst inequality holds by equation (3.10b). Therefore, χ′i satis�es the
conditions of Lemma 3.2, so χ′i ∈ XA. Since χi ∈ Fk(U), there exists a
characteristic function χ′′i ∈ U so that χ′′i vk χi. By the choice of m,
χ′′i (ci) ≤ m < µ(c̄) ≤ χi(ci), consequently χ′′i (ci) ≤ χi(ci) − k. This proves
that χ′′i vk χ

′
i. As a result, χ′i ∈ Fk(U).

Analogously, χ′(d) = χ(d) for all d 6= f(c̄), and either χ′(f(c̄)) =
χ(f(c̄)) = ω or χ′(f(c̄)) = χ(f(c̄))− k > m− k ≥ 0. Consequently, χ′ ∈ XA
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by Lemma 3.2, and χ′ vk χ. Since χ′0, . . . , χ
′
n−1 ∈ Fk(U), we get that

χ′ ∈ CFFk(U). From the minimality of χ we see that χ′ = χ. But then µ′

contradicts the minimality of µ, which concludes the proof.

Lemma 3.11. Let k ≥ 1, and let A, F ⊆ OA and U ⊆ XA be �nite sets.

Then
⋃

n∈ω Cn
FFk(U) is an order �lter with respect to vk, and its minimal

elements can be e�ectively computed.

Proof. For every m ∈ ω de�ne Um =
⋃

n≤m Cn
FFk(U), where U0 = Fk(U).

For each m ∈ ω, Um is an order �lter in 〈XA;vk〉 whose minimal elements
can be e�ectively computed by Lemmas 3.9 and 3.10. Since A is �nite,
〈XA;vk〉 is well-ordered and consequently the set of all its order �lters under
the inclusion order satis�es the ascending chain condition. Therefore, the
ascending chain U0 ⊆ U1 ⊆ U2 ⊆ . . . of order �lters cannot be strictly
increasing.

Assume that Um = Um+1 for some m ∈ ω. This condition is equivalent
to that of Cm+1Fk(U) ⊆

⋃
n≤m Cn

FFk(U). Applying CF to both sides we get
that

Cm+2Fk(U) ⊆
⋃

1≤n≤m+1

Cn
FFk(U) ⊆ Um+1.

Consequently, Um+1 = Um+2. By induction, we obtain that Um = Um+1 =
Um+2 = . . . , as a result Um =

⋃
n∈ω Cn

FFk(U).
This yields an algorithm to �nd

⋃
n∈ω Cn

FFk(U). Calculate U0,U1, . . . in
order using Lemma 3.10. If Um = Um+1 for some m ∈ ω, then we have
found

⋃
n∈ω Cn

FFk(U) and know its minimal elements. This condition must
occur and therefore the algorithm stops, because we cannot have a strictly
increasing sequence of order �lters in 〈XA;vk〉.

The previous lemma shows that the minimal elements of the in�nite union⋃
n∈ω Cn

FX(G) of Lemma 3.7 can be e�ectively calculated provided that X(G)
forms an order �lter in 〈XA;vk〉 for some k ≥ 1. We will argue that such
integer k and set G ⊆ 〈F〉 can be found if 〈F〉 contains a near-unanimity
operation. We need the following de�nition.

De�nition 3.12. Let k ∈ ω and f ∈ O(n)
A . We call f a k-nu operation if

k ≤ n and

f(x, . . . , x) ≈ x,

f |0(x, y) ≈ · · · ≈ f |k−1(x, y) and
f |k(x, y) ≈ · · · ≈ f |n−1(x, y) ≈ x.

This concept is the generalization of that of near-unanimity and weak
near-unanimity operations. The 0-nu operations are precisely the near-
unanimity operations, while the k-nu operations of arity k are called weak
near-unanimity operations.

Lemma 3.13. If a clone on an m-element set contains a near-unanimity

operation, then it contains a 2-nu operation of arity at most 2 +mm2
.
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To prove this lemma, we need the following theorem.

Theorem 3.14 (L. Lovász [18]). Let n, k be natural numbers such that 2 ≤
2k ≤ n, and Gn,k be the graph on the set of all k-element subsets of an

n-element set with the disjointness relation. Then the chromatic number of

Gn,k is n− 2k + 2.

Proof of Lemma 3.13. Let C be a clone and f ∈ C be a near-unanimity
operation of arity n. If n ≤ 1 + mm2

, then we are done as f is a 2-nu
operation. Otherwise n−mm2 ≥ 2. Put

k =

⌊
n−mm2

+ 1
2

⌋
.

By the choice of k, we have n −mm2 ≤ 2k ≤ n −mm2
+ 1, from which it

follows that 1 +mm2 ≤ n− 2k + 2 ≤ 2 +mm2
and 2 ≤ 2k ≤ n.

We color each k-element subset I ⊆ {0, . . . , n−1} by the binary operation
f |I de�ned as

f |I(x, y) = f(u0, . . . , un−1) where ui =

{
x if i 6∈ I,
y if i ∈ I.

There are mm2
binary operations on an m-element set, thus we colored the

graph Gn,k with mm2
colors. Since the chromatic number of this graph is

n − 2k + 2, by Theorem 3.14, and n − 2k + 2 > mm2
, there must exist two

disjoint k-element subsets I, J ⊂ {0, . . . , n− 1} for which f |I = f |J .
Choose an arbitrary bijection τ from {0, . . . , n−1}\(I∪J) to {0, . . . , n−

2k − 1}. We claim that the following operation is a 2-nu operation in C of
arity at most 2 +mm2

:

g(x, y, z0, . . . , zn−2k−1) = f(u0, . . . , un−1) where ui =


x if i ∈ I,
y if i ∈ J,
zτ(i) otherwise.

Clearly, g ∈ C and its arity is n − 2k + 2 ≤ 2 + mm2
. Moreover, g|0 =

f |I = f |J = g|1, and for all i ≥ 2, g|i = f |τ−1(i−2) = x because f was a
near-unanimity operation. This proves that g is a 2-nu operation.

Lemma 3.15. Let C be a clone on an m-element set that contains a k-nu
operation of arity k + n. Then C contains a km!-nu operation f of arity

km! + n such that

f |0(x, f |0(x, y)) = f |0(x, y).

Proof. Let A be the underlying set of C, and g ∈ C be a k-nu operation of
arity k+n. By induction we de�ne a sequence g1, g2, g3, . . . ∈ C of operations
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of arities k + n, k2 + n, k3 + n, . . . , respectively. Put g1 = g, and for i ≥ 1
put

gi+1(x0, . . . , xki+1−1, y0, . . . , yn−1)
= g
(
gi(x0, . . . , xki−1, y0, . . . , yn−1), . . . ,
gi(x(k−1)ki , . . . , xki+1−1, y0, . . . , yn−1), y0, . . . , yn−1

)
.

Since g is idempotent, i.e. g(x, . . . , x) = x, the de�ned operations g1, g2, . . .
are idempotent, as well. For each element x ∈ A de�ne the unary operation
hx(y) = g|0(x, y). We claim that, for each i ≥ 1 and j ∈ ω,

gi|j(x, y) =

{
hi

x(y) if j < ki,

x if j ≥ ki.

This holds for g1 by de�nition. Let i ≥ 1 and j < ki+1. Choosing l < k such
that lki ≤ j < (l + 1)ki we get that

gi+1|j(x, y) = g
(
gi(x, . . . , x), . . . , gi(x, . . . , x), gi|j−lki(x, y),

gi(x, . . . , x), . . . , gi(x, . . . , x), x, . . . , x
)

= g|l(x, gi|j−lki(x, y))

= hx(hi
x(y)

= hi+1
x (y).

Finally, if i ≥ 1 and ki+1 ≤ j < ki+1 + n, then

gi+1|j(x, y) = g(gi(x, . . . , x), . . . , gi(x, . . . , x), x, . . . , x, y, x, . . . , x))
= g|j−ki+1+k(x, y)
= x.

This proves that each gi is a ki-nu operation of arity ki + n. We argue that
f = gm! is the operation we claimed in the statement of the lemma. Indeed,
since hx is a unary operation on an m-element set, it is elementary to verify
that hm!

x is idempotent, that is, hm!
x = h2·m!

x . Then,

f |0(x, f |0(x, y)) = hm!
x (hm!

x (y)) = hm!
x (y) = f |0(x, y).

Lemma 3.16. Let A be a �nite set of size m.

(1) If a clone on A contains a near-unanimity operation, then it contains

a 2m!-nu operation g of arity at most 2m! +mm2
that satis�es

g|0(x, g|0(x, y)) ≈ g|0(x, y).

(2) If g ∈ OA is a 2m!-nu operation satisfying the above identity, then there

exists a set G ⊆ 〈{g}〉 such that G contains an idempotent operation

and X(G) = F2m!−1({χg}).
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Proof. The �rst statement follows immediately from Lemmas 3.13 and 3.15.
To prove the second statement, let g be a 2m!-nu operation of arity 2m! + k
that satis�es the identity of the lemma. If g is a near-unanimity operation,
then we can choose G = {g}. Thus assume that g is not a near-unanimity
operation. By induction, we de�ne a sequence of operations gi ∈ 〈{g}〉
(i = 1, 2, . . . ) of arity i(2m! − 1) + 1 + k, respectively. Put g1 = g, and for
all positive integers i de�ne

gi+1(x0, . . . , x(i+1)(2m!−1), y0, . . . , yk−1)

= gi

(
g(x0, . . . , x2m!−1, y0, . . . , yk−1),

x2m! , . . . , x(i+1)(2m!−1), y0, . . . , yk−1

)
. (3.16a)

We claim that each gi is a (i(2m! − 1) + 1)-nu operation and gi|0 = g|0.
This holds trivially for g1. We prove this by induction, so assume that the
claim holds for gi. Clearly, gi+1 is idempotent. If 0 ≤ j < 2m!, then

gi+1|j(x, y) ≈ gi|0(x, g|j(x, y)) ≈ g|0(x, g|0(x, y)) ≈ g|0(x, y),

where the �rst identity follows from (3.16a), gi|0 = g|0 by the induction
assumption, g|j = g|0 since g is a 2m!-nu operation, and �nally the last
identity was assumed in the statement of the lemma. On the other hand, if
2m! ≤ j ≤ (i+ 1)(2m! − 1), then

gi+1|j(x, y) ≈ gi|j−(2m!−1)(x, y) ≈ g|0(x, y),

where the �rst identity holds because the �rst argument of gi on the right
hand side of equation (3.16a) is g(x, . . . , x) ≈ x, and the variable xj is at
the j − (2m! − 1)-th argument of gi. Finally, if (i + 1)(2m! − 1) < j ≤
(i + 1)(2m! − 1) + k, i.e., we plug in y into one of the y coordinates in
equation (3.16a) and x everywhere else, then we get gi+1|j(x, y) ≈ x, because
g|j−i(2m!−1)(x, y) ≈ x and gi|j−(2m!−1)(x, y) ≈ x. This �nishes the proof of
the claim.

From the claim it immediately follows that

χgi(b) =


ω if b(x, y) ≈ x,

i(2m! − 1) + 1 if b(x, y) ≈ g|0(x, y),
0 otherwise,

which is well de�ned, because g|0(x, y) 6≈ x since we assumed that g is not
a near-unanimity operation. Now put G = {g1, g2, . . . }. Clearly, X(G) =
F2m!−1({χg}).

Theorem 3.17. Given a �nite set A and a �nite set F of operations on A,
it is decidable whether the clone generated by F contains a near-unanimity

operation.
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Proof. Put m = |A|. First we check if 〈F〉 contains a 2m!-nu operation of
arity at most 2m! +mm2

that satis�es the identity of Lemma 3.16. If such an
operation is not found, then 〈F〉 cannot have a near-unanimity operation.
If g ∈ 〈F〉 is such an operation, then by the same lemma we know that
there exists a set G ⊆ 〈{g}〉 ⊆ 〈F〉 of operations such that G contains
an idempotent operation and X(G) = F2m!−1({χg}). We do not need to
�compute� the set G, in fact it is in�nite. Then by Lemma 3.11, the minimal
elements of the order �lter

U =
⋃
n∈ω

Cn
FF2m!−1({χg}) =

⋃
n∈ω

Cn
FX(G)

can be e�ectively computed. By Lemma 3.7, the clone 〈F〉 contains a near-
unanimity operation if and only if χnu ∈ U . But this can be easily checked if
we know the minimal elements of U . In fact, χnu is minimal in 〈XA;v2m!−1〉,
and therefore must be among the minimal elements of U .
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Summary

The three chapters of my dissertation are based on the papers [19, 20]
and [21], respectively. The �rst paper is not related to the main topic of
the dissertation�decidability problems�but gives a complete description of
the simple algebras in the variety of semilattices expanded by an abelian
group of automorphisms. In the second paper we study the decidability of
the near-unanimity problem, posed ten years ago in [5], and prove a partial
version of it to be undecidable. In the last, unpublished paper we show that
the original problem, contrary to expectations, is decidable. As a conse-
quence, we obtain the decidability of the natural duality problem for �nitely
generated, congruence distributive quasi-varieties.

We assume basic knowledge of universal algebra and direct the reader
to either [2] or [24] for reference. Although the study of the near-unanimity
problem stems from that of natural dualities (see [4, 5, 6]), the reader is
not required to know this theory. For easier reference, we kept the original
numbering of de�nitions and theorems of the dissertation.

F-semilattices

One of the primary goals of universal algebraic investigations is the full de-
scription of broad classes of algebras. According to a theorem of G. Birkho�,
in equational classes of algebras, such as in the varieties of groups, rings and
lattices, every algebra can be expressed as a subdirect product of subdirectly
irreducible members of the class. Therefore, these subdirectly irreducible
algebras can be considered as the building blocks of varieties. The descrip-
tion of subdirectly irreducible algebras is particularly important because the
study of many algebraic properties can be reduced to that of subdirectly
irreducible algebras.

This description is trivial in the variety of semilattices because only the
two-element semilattice is subdirectly irreducible. The situation is not this
simple in other varieties, e.g., every subdirectly irreducible algebra in the
variety generated by tournaments is a tournament, but not every algebra
is [22]. There are (residually large) varieties, such as the variety generated
by the quaternion group, where the subdirectly irreducible algebras form a
proper class, and their full description is practically beyond hope. Therefore,
in many cases we restrict ourselves to the study of simple algebras, i.e.,
subdirectly irreducible algebras that have only trivial congruences. Even this
problem is extremely di�cult in general, as witnessed by the classi�cation
of �nite simple groups.

Algebras with a commuting semilattice operation, i.e., satisfying the iden-
tity

f(x1 ∧ y1, . . . , xn ∧ y1) ≈ f(x1, . . . , xn) ∧ f(y1, . . . , yn)

for all basic operations f , have been studied in various forms. In many
respects these algebras behave similarly to modules. For example, it is proved
in [15] that if a locally �nite variety of type-set {5} satis�es a term-condition
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similar to the term-condition for abelian algebras, then it has a semilattice
term that commutes with all other term operations.

Within the class of modes�that is, idempotent algebras whose basic
operations commute with each other�those having a semilattice term oper-
ation play an important role (see [29, 30]); these algebras are called semilat-
tice modes. The structure of locally �nite varieties of semilattice modes is
described in [14].

An interesting class of algebras with a commuting semilattice operation
arises if we add automorphisms, as basic operations, to a semilattice. This
is a special case of the construction studied in [3]. In general, one can
expand any variety V by a �xed monoid F of endomorphisms in a natural
way. The expanded variety is the variety of V-algebras A equipped with new
unary basic operations, acting as endomorphisms on A. We study only the
following special case.

De�nition 1.1. An algebra S = 〈S;∧, F 〉 with a binary operation ∧ and a
set F of unary operations is an F-semilattice, if F = 〈F ; ·,−1, id〉 is a group
and S satis�es the following identities:

(1) the operation ∧ is a semilattice operation,

(2) id(x) ≈ x,

(3) f(g(x)) ≈ (f · g)(x) for all f, g ∈ F , and

(4) f(x ∧ y) ≈ f(x) ∧ f(y) for all f ∈ F .

Note that every semilattice can be considered as an F-semilattice in a
trivial way: every unary operation of F acts as the identity function. A
much more interesting example of an F-semilattice is the following.

De�nition 1.2. For a group F = 〈F ; ·,−1, id〉 let P(F ) = 〈P (F );∧, F 〉 be
the F-semilattice which is de�ned on the set P (F ) of all subsets of F by
setting

(1) A ∧B = A ∩B for all A,B ⊆ F , and

(2) f(A) = A · f−1 for all f ∈ F and A ⊆ F .

Our �rst important statement reduces the study of subdirectly irreducible
F-semilattices to that of the subalgebras of P(F ).

Lemma 1.6. If S is a subdirectly irreducible F-semilattice, then S is iso-

morphic to a subalgebra U of P(F ). The algebra U can be selected so that

it has a unique element M ⊆ F with the following properties:

(1) id ∈M and M ·M = M ,

(2) A = M ·A for all A ∈ U , and

(3) M =
⋂
{A ∈ U | id ∈ A }.
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In [12] J. Jeºek has described all subdirectly irreducible 〈Z; +〉-semilat-
tices. Using our lemma above, we can easily describe the �nite subdirectly
irreducible F-semilattices (Proposition 1.4), and all subdirectly irreducible
F-semilattices when F is locally �nite (Corollary 1.7). In these special cases
the subdirectly irreducible subalgebra U of P(F ) contains the empty set and
some subgroup M of F. These elements also play an important role in the
following class of simple F-semilattices.

De�nition 1.8. If F is a �xed group and M is a subgroup of F, then let
SM denote the subalgebra of P(F ), the elements of which are the empty set
and the right cosets of M .

Thus the empty set is the least element in SM , and the right cosets of
M are the atoms. The set F of unary operations of SM acts as a transitive
permutation group on the set of atoms. It is not hard to show that the
algebras SM are exactly those simple subalgebras of P(F ) that have a least
element and some atoms.

In [11] J. Jeºek has described all simple algebras in the variety of semilat-
tices expanded by two commuting automorphisms, that is, in the variety of
〈Z × Z; +〉-semilattices. We generalize this result to arbitrary commutative
groups, which is our main result in this chapter.

De�nition 1.13. Let F be a �xed commutative group. Then for every
nonconstant homomorphism β from F to the additive group 〈R; +〉 of the
real numbers let us de�ne an F-semilattice Rβ = 〈R;min, F 〉 as follows:

(1) min(a, b) is taken with respect to the natural order of R, and

(2) f(a) = a− β(f) for all f ∈ F and a, b ∈ R.

De�nition 1.16. A homomorphism β : F → 〈R; +〉 is called dense if for each
real number ε > 0 there exists an element f ∈ F such that 0 < β(f) ≤ ε.

If the homomorphism β in De�nition 1.13 is not dense, then the range
of β is isomorphic to 〈Z; +〉. We will consider this case separately:

De�nition 1.18. Let F be a �xed commutative group. Then for every
surjective homomorphism α from F onto the additive group 〈Z; +〉 of the
integers let Zα = 〈Z;min, F 〉 be the F-semilattice de�ned as follows:

(1) min(a, b) is taken with respect to the natural order of Z, and

(2) f(a) = a− α(f) for all f ∈ F and a, b ∈ Z.

Theorem 1.21. If F is a commutative group, then every simple F-semi-

lattice is isomorphic to one of the following algebras:

(1) SM , where M is a subgroup of F,

(2) Zα, where α : F → 〈Z; +〉 is a surjective group homomorphism, and
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(3) the subalgebras of Rβ, where β : F → 〈R; +〉 is a dense group homo-

morphism.

Furthermore, these simple F-semilattices are pairwise nonisomorphic, except

for the case when β1, β2 are dense homomorphisms, S1,S2 are subalgebras

of Rβ1 ,Rβ2 respectively, and there exist real numbers t > 0 and d such that

β2 = tβ1 and S2 = tS1 + d.

We conclude this chapter by noting that there exists a simple F-semilat-
tice in the nonabelian case that has a least element but no atom and its
semilattice order is not linear.

Duality theory and the near-unanimity problem

General duality theory is capable of describing various well-known dualities�
for example Pontryagin's, Stone's and Priestley's�between a category A of
algebras with homomorphisms and a category X of topological structures
with continuous structure preserving maps (see [6]). In these cases the class
A is a quasi-variety generated by a single algebra P ∈ A, and X is the
class of closed substructures of powers of an object P∼ ∈ X having the same
underlying set as P. Without getting into the details, we note that the points
of the dual A∼ ∈ X of an algebra A ∈ A are the homomorphisms ϕ : A → P;
while the elements of the dual X ∈ A of a topological structure X∼ ∈ X are
the f : X∼ → P∼ continuous structure preserving maps.

Example. For the Pontryagin duality, A is the class of abelian groups,

P = 〈P ; ·,−1, 1〉 is the circle group on the set P = { z ∈ C : |z| = 1 } of

complex numbers with multiplication, X is the category of compact topolog-

ical abelian groups, and P∼ = 〈P ; ·,−1, 1, τ〉 where τ is the restriction of the

natural topology of the complex plane to P .

Example. For the Stone duality, A is the category of Boolean algebras,

P = 〈{0, 1};∧,∨, ′, 0, 1〉 is the two-element Boolean algebra, X is the category

of totally disconnected Hausdor� spaces, and P∼ = 〈{0, 1}; τ〉 where τ is the

discrete topology. It is easy to see that the ultra �lters of a Boolean algebra

A ∈ A correspond to the homomorphisms of A onto P.

Example. For the Priestley duality, A is the category of bounded distributive

lattices, P = 〈{0, 1};∨,∧, 0, 1〉 is the two-element bounded distributive lattice,

X is the category of totally order-disconnected spaces, and P∼ = 〈{0, 1};≤, τ〉
where τ is the discrete topology. It is easy to see that the prime �lters of a

distributed lattice A ∈ A correspond to the homomorphisms of A to P.

We say that an algebra P admits a natural duality, if there exists a
topological structure P∼ de�ned on P such that the quasi-variety generated
by P is dually represented, as de�ned by duality theory, by the category X
of closed substructures of powers of P∼. Therefore, to leverage the power of
duality, it is natural to ask which �nite algebras admit a natural duality. Is
this characterization possible? Is it decidable of a �nite algebra P whether
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it admits a natural duality? This second question is known as the natural

duality problem. Currently, we do not know the answer to this problem, but
many expect it to be undecidable.

The natural duality problem was partially reduced to a pure algebraic
problem in the following way. We call a term t of an algebra P a near-

unanimity term if it satis�es the following identities:

t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, . . . , x, y) ≈ x.

An algebra is congruence join-semi-distributive if its congruence lattice sat-
is�es the quasi-identity

x ∨ y = x ∨ z =⇒ x ∨ (y ∧ z) = x ∨ y.

B. A. Davey and H. Werner proved in [6] that in the presence of a near-
unanimity term of P, the quasi-variety A generated by P admits a natural
duality. The converse was proved in [5] under the assumption that A is
congruence join-semi-distributive:

Theorem (B. A. Davey, L. Heindorf and R. McKenzie [5]). Let P be a

�nite non-trivial algebra and let A be the quasivariety generated by P. The

following are equivalent:

(1) P has a near-unanimity term;

(2) P admits a natural duality, and every algebra in A is congruence dis-

tributive; and

(3) P admits a natural duality, and every �nite algebra in A is congruence

join-semi-distributive.

This theorem, known as the near-unanimity obstacle theorem, motivates the
near-unanimity problem, the problem of deciding whether a �nite algebra has
a near-unanimity term. Clearly, if the arity of the near-unanimity term of P
is known, then �nding the near-unanimity term is easy by simply calculating
the free algebra in A generated by the appropriate number of elements. The
di�culty lies in the fact that we do not even have an upper bound for the
arity of a possible near-unanimity term.

Near-unanimity term operations come up naturally in the study of alge-
bras. For example, all lattices have a ternary near-unanimity term

(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).

From E. L. Post's classi�cation [27] we know that almost all clones on a two
element set contain a near-unanimity operation. It is also well known that
an algebra having a near-unanimity term lies in a congruence distributive
variety, and has a �nite base of identities provided it is of �nite signature
(see [31]).
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It is easy to decide whether the quasi-variety A generated by a �nite
algebra P is congruence distributive because it is enough to search for Jóns-
son terms among the �nitely many ternary terms of P. Therefore, by the
near-unanimity obstacle theorem, if the near-unanimity problem were unde-
cidable, then the natural duality problem would also be undecidable.

The undecidability of a partial near-unanimity term

In an attempt to prove the undecidability of the near-unanimity problem the
following approach was taken by R. McKenzie.

De�nition 2.1. Let A be a �xed �nite algebra, t(x1, . . . , xn) be a term
of A, and S ⊆ A. We say that t is a partial near-unanimity term on S if

t(y, x, . . . , x) = t(x, y, x, . . . , x) = · · · = t(x, . . . , x, y) = x

for all x, y ∈ S.

Clearly, a term of A is a near-unanimity term if and only if it is a partial
near-unanimity term of the two-generated free algebra in the variety gener-
ated by A on the set {x, y} of generators. Thus it is natural to study the
decidability of the partial near-unanimity problem on some �xed subset of
a �nite algebra. It is proved in [23] that the existence of a partial near-
unanimity term on a �xed two-element subset is undecidable. In Chapter 2
we extend this result to a subset excluding two �xed elements:

Theorem 2.2. There exists no algorithm that can decide of a �nite algebra

A and two �xed elements r, w ∈ A if A has a partial near-unanimity term

on the set A \ {r, w}.

This theorem does not seem to be signi�cant after learning the decidabil-
ity of the near-unanimity problem. Nevertheless, the methods used in the
proof are interesting on their own and may be useful for the study of other
decidability problems.

In the proof of this theorem we employ Minsky machines, which are
equivalent to Turing machines (see [25, 26]). The �hardware� of a Minsky
machine consists of a pair of registers that can contain arbitrary natural
numbers. The �software� is a �nite set of states containing an initial and
a halting state together with a list of commands. There are two types of
commands: the �rst instructs the machine to increase the value stored in
one of the registers by one, and then to go to another state. The second
command �rst checks the value stored in one of the registers; if it is zero, then
the machine goes to one state; otherwise the value stored in the register is
decremented by one and the machine goes to another state. The computation

of the machine is a possibly in�nite sequence of states together with the
values of the registers at each step.

Since the halting problem for Minsky machines is undecidable, it is
enough to construct (by an e�ective algorithm) for each Minsky machineM
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an algebra A(M) with two special elements r, w ∈ A(M) such that A(M)
has a partial near-unanimity term on the set A(M)\{r, w} if and only ifM
halts.

In the construction the universe and the set of basic operations of A(M)
depend on the set of states and commands of M, respectively. Our goal
is to encode the halting computation of M into a partial near-unanimity
term. The key step is to show that given a partial near-unanimity term t
on A(M) \ {r, w} one can reconstruct the halting computation of M from
the term tree of t. The de�nition of the basic operations forces the shape of
the tree to be almost �linear� with the basic operations encoding a sequence
of commands of M. With the proper de�nition of the basic operations,
for example making their range pairwise disjoint, we can easily ensure that
the sequence of states is correct except possibly those steps where the next
state depends whether the content of a register is zero or not. We solve this
di�culty by encoding whether the contents of registers are zero at each step
together with the states. We cannot encode the actual values of the registers,
which can be arbitrary large natural numbers, because A(M) must be �nite.
Our �nal task is to verify whether the sequence of states together with these
special markings for zero values correspond to the halting computation of
M. We achieve this by forcing an appropriate matching of the variables of
t via the known value of t at near-unanimous evaluations.

The element w ∈ A(M) has (essentially) the absorbing property: for all
basic operations f(x1, . . . , xn) and elements x1, . . . , xn ∈ A(M) the implica-
tion

w ∈ {x1, . . . , xn} =⇒ f(x1, . . . , xn) = w

holds. We use w to indicate that either the shape of t is incorrect, or the
sequence of encoded states does not correspond to that of the halting compu-
tation. If some local inconsistency is detected, then one of the basic opera-
tions in the term tree returns w at an appropriate near-unanimous evaluation
(x, . . . , x, y, x . . . , x). Then the element w propagates to the root of t by the
absorbing property, thus t(x, . . . , x, y, x, . . . , x) = w, which is a contradic-
tion.

An improvement of this method might be possible to the subset A(M) \
{w}, which could be formulated, analogously to the results in [13], as the
undecidability of the near-unanimity problem for partial algebras:

Problem 1. Given a �nite partial algebra, decide whether it has a term that

is de�ned on all near-unanimous evaluations and satis�es the near-unanimity

identities.

The decidability of a near-unanimity term

In the last chapter of the dissertation we prove the decidability of the near-
unanimity problem, a rather surprising development after the negative par-
tial results. We state this theorem in the language of clones:
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Theorem 3.17. Given a �nite set A and a �nite set F of operations on A,
it is decidable whether the clone generated by F contains a near-unanimity

operation.

Instead of working with operations and their composition, we introduce
an equivalence relation on the set of operations in such a way that

(1) the near-unanimity operations form an equivalence class of the relation,

(2) a new notion of composition can be introduced on the equivalence
classes, and

(3) it is possible to algorithmically compute the closure of equivalence
classes under this new notion of composition.

Based on these requirements, our next de�nition might not be so surprising.
We will need the following notations. Let ω and ω+ be the set of all �nite and
countable cardinals, respectively. Let OA be the set of all operations on the
set A, and for n ∈ ω let O(n)

A = AAn
, that is, the set of all n-ary operations

on A. Given an operation f ∈ OA, we consider those binary operations�
called polymers�with their multiplicities that arise as f(x, . . . , x, y, x, . . . , x)
where the lone y is at a �xed coordinate:

De�nition 3.1. For f ∈ O(n)
A and i ∈ ω, the ith polymer of f is f |i ∈ O(2)

A

de�ned as

f |i(x, y) =

{
f(x, . . . , x,

ith
^
y , x, . . . , x) if 0 ≤ i < n,

f(x, . . . , x) if i ≥ n,

where y occurs at the ith coordinate of f in the �rst case. The collection of
polymers of f together with their multiplicities is the characteristic function

of f , which is formally de�ned as the map χf : O(2)
A → ω+ where

χf (b) = |{ i ∈ ω : f |i = b }| .

Clearly, near-unanimity operations are characterized by their polymers;
namely all of them must be equal to x. Therefore, the characteristic functions
of near-unanimity operations are the same and equal to

χnu(b) =

{
ω if b(x, y) ≈ x,

0 otherwise.

Let XA be the set of characteristic functions of operations on A. Now the
kernel of the operator

X : OA → XA, X : f 7→ χf

satis�es our condition (1) stated above.
We do not give the technical de�nition of the composition operator CF

as the following shall be su�cient. We distinguish the �outer� set F ⊆ OA
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of operations from the �inner� objects on which we apply the members of F .
For F ,G ⊆ OA the set CF (G) contains all operations t of the form

t(y1, . . . , yk) = f
(
g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)

)
,

where f ∈ F and g ∈ G are m and n-ary operations, respectively, and
{x11, . . . , xmn} ⊆ {y1, . . . , yk}. We employ the same operator symbol CF for
characteristic functions, thus CF (U) ⊆ XA for every U ⊆ XA. The connection
between the two composition operators, the real meaning of condition (2),
is expressed by the next lemma.

Lemma 3.6. XCF (G) = CFX(G) for all F ,G ⊆ OA.

Up to this point, we showed that the clone 〈F〉 generated by F ⊆ OA

contains a near-unanimity operation if and only if the characteristic function
χnu can be obtained from the characteristic function χid of the unary projec-
tion by �nitely many applications of the composition operator CF . However,
we are still far from establishing requirement (3), our ultimate goal.

Suppose that the sets A and F ⊆ OA are �nite, and that the clone 〈F〉
contains a near-unanimity operation. Then, using a theorem of L. Lovász
on the chromatic number of Kneser graphs [18], we can show that 〈F〉 must
contain an operation g of bounded arity (dependent only on |A|) that satis�es
a set of technical identities similar to that of near-unanimity operations. We
can e�ectively �nd g since its arity is bounded.

Recall that a partially ordered set is called well-ordered, if it has no in-
�nite anti-chains and satis�es the descending chain condition, i.e., contains
no strictly decreasing in�nite sequence of elements. Using the properties
of g, we introduce a well-ordered partial order on a special subset of XA.
By applying the composition operator CF to an order �lter of characteristic
functions, we get another order �lter whose minimal elements can be e�ec-
tively computed from that of the original �lter. If we apply the composition
operator iteratively, we get an increasing sequence of order �lters under in-
clusion. However, a well-ordered partially ordered set cannot have a strictly
increasing in�nite chain of order �lters, therefore this process must termi-
nate in �nitely many steps. This proves that the closure of characteristic
functions under the composition operator can be e�ectively calculated.

As an immediate consequence of the decidability of the near-unanimity
problem and the near-unanimity obstacle theorem from [5], we also obtain
the decidability of the natural duality problem for �nite algebras in a con-
gruence join-semi-distributive variety.

Since there are only �nitely many algebras on a �xed n-element set whose
basic operations are at most r-ary, by the decidability of the near-unanimity
problem, there exists a recursive function N(n, r) that puts an upper limit
on the minimum arity of a near-unanimity term operation for those alge-
bras that have one. Consequently, given an algebra P whose operations are
at most r-ary, one can decide the near-unanimity problem by simply con-
structing all at most N(|P |, r)-ary terms and checking if one of them yields a
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near-unanimity operation. If no such is found, then P has no near-unanimity
term operation. We know that such recursive function N(n, r) exists, but
currently we do not have a formula for one.

A very interesting group of open problems is related to the constraint

satisfaction problem, which we do not de�ne here and refer the reader to [8]
for details. It is proved in [10] that if a set Γ of relations on a set admits
a compatible near-unanimity operation, then the corresponding constraint
satisfaction problem CSP(Γ) is solvable in polynomial time. Therefore, it is
natural to consider the near-unanimity problem for relations:

Problem 2. Given a �nite set Γ of relations on a set, decide whether there

exists a near-unanimity operation that is compatible with each member of Γ.

Currently we are unable to solve this problem, even in the light of our
result. We know that if a clone has a near-unanimity operation, then both the
clone and its dual relational clone are �nitely generated (see [31]). Inspired
by this fact, we ask the following:

Problem 3. Given a �nite set of operations and a �nite set of relations on

the same underlying set, decide if the functional and relational clones they

generate are duals of each other.
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Összefoglaló

Doktori értekezésemet a [19, 20] és [21] dolgozatok eredményeib®l állítottam
össze. Az els® dolgozat témája nem kapcsolódik szervesen az értekezésem
címét adó eldönthet®ségi problémák köréhez, hanem egy speciális algebra-
osztály egyszer¶ algebráit írja le. A második dolgozatomban egy tíz éve
megoldatlan eldönthet®ségi problémát, az úgynevezett többségi függvény lé-
tezésének problémáját vizsgálom, és annak egy parciális változatának eldönt-
hetetlenségét bizonyítom. A harmadik, még nem publikált dolgozatomban
megmutatom, hogy az eredeti probléma a várakozásokkal ellentétben eldönt-
het®. Ennek egyik következménye, hogy fontos algebraosztályokról, a vége-
sen generált kongruenciadisztributív kvázivarietásokról eldönthet®, hogy a
klasszikus Pontrjagin-, Stone-, illetve Priestley-féle dualitásokhoz hasonló-
an, topológiai módszerekkel leírhatók-e.

Doktori értekezésem megértéséhez csak az univerzális algebra alapfogal-
mainak ismeretére van szükség, melyek mindegyike az egyetemi tanulmá-
nyok alatt el®fordul, illetve a [2] vagy [24] könyvekben fellelhet®. Annak
ellenére, hogy a többségi függvény létezésének problémáját a természetes
dualitások elmélete motiválta (lásd [4, 5, 6]), ezen elmélet ismeretére nem
lesz szükségünk. A hivatkozások megkönnyítése érdekében megtartottam az
értekezésben kimondott de�níciók és tételek számozását.

F-félhálók

Az univerzális algebrai vizsgálatok egyik f® célja általános algebraosztályok
minél teljesebb leírása. G. Birkho� tétele szerint az azonosságokkal de�-
niálható algebraosztályok, mint például a klasszikus csoportok, gy¶r¶k, és
hálók alkotta varietások minden algebrája az osztály épít®köveinek tekint-
het® szubdirekt irreducibilis algebrák szubdirekt szorzatára bontható. Mivel
nagyon sok algebrai tulajdonság vizsgálata visszavezethet® szubdirekt irre-
ducibilis algebrák vizsgálatára, fontos kutatási terület ezen algebrák leírása.

A félhálók varietásában például ez a leírás triviális, mivel csak a kéte-
lem¶ félháló szubdirekt irreducibilis. Máshol a helyzet nem ilyen egyszer¶,
mint például a turnamentek által generált varietásban [22], ahol nem min-
den algebra turnament, de a szubdirekt irreducibilis algebrák azok. Léteznek
olyan (reziduálisan nagy) varietások is, mint például a kvaterniócsoport ál-
tal generált varietás, ahol a szubdirekt irreducibilis algebrák valódi osztályt
alkotnak, és valamilyen értelemben leírásuk reménytelen. Ezért sokszor az
egyszer¶ algebrák vizsgálatára szorítkozunk, azaz olyan szubdirekt irredu-
cibilis algebrákra, melyeknek csak triviális kongruenciái vannak. A véges
egyszer¶ csoportok klasszi�kációja mutatja legjobban, hogy még ez a prob-
léma is milyen nehéz általában.

Több probléma vizsgálatában természetes módon kerülnek el® felcserél-
het® félhálóm¶velettel rendelkez® algebrák, azaz olyan algebrák, melyekben
minden f(x1, . . . , xn) m¶veletre teljesül az

f(x1 ∧ y1, . . . , xn ∧ y1) ≈ f(x1, . . . , xn) ∧ f(y1, . . . , yn)
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azonosság. Sok tekintetben ezen algebrák nagyon hasonlóan viselkednek a
modulusokhoz. Például K. Kearnes és Szendrei Ágnes [15] cikke alapján ha
valamely lokálisan véges varietás a szelíd kongruenciák elmélete szerint (lásd
[9]) csak 5-ös típust tartalmaz, és teljesül benne egy speciális term-feltétel,
akkor létezik olyan félháló-kifejezésfüggvénye, amely minden m¶velettel fel-
cserélhet®. Az olyan idempotens algebrák vizsgálatában, amelyekben az
alapm¶veletek egymással mind felcserélhet®ek, a félhálóm¶velettel rendelke-
z® algebrák fontos szerepet játszanak, melyeket félhálómódoknak nevezünk.
Lokálisan véges félhálómódok varietásaiban a szubdirekt irreducibilis algeb-
rákat K. Kearnes írta le a [14] cikkben.

Érdekes, felcserélhet® félhálóm¶velettel rendelkez® algebrát kapunk, ha
félhálóhoz automor�zmusokat, mint új egyváltozós m¶veleteket adunk hoz-
zá. Ezt általában is elvégezhetjük [3]: minden V varietás természetes módon
kib®víthet® egy rögzített F automor�zmus-monoiddal úgy, hogy az A ∈ V
algebrákhoz olyan új egyváltozós m¶veleteket veszünk hozzá, amelyek endo-
mor�zmusként hatnak A-n. Ennek a konstrukciónak mi csak a következ®
speciális esetével foglalkozunk.

1.1. De�níció. A kétváltozós ∧ m¶veletet és az F halmaz elemeivel je-
lölt egyváltozós m¶veleteket tartalmazó S = 〈S;∧, F 〉 algebrát F-félhálónak
nevezzük, ha F = 〈F ; ·,−1, id〉 csoport, és S-ben teljesülnek az alábbi azo-
nosságok:

(1) a félháló-azonosságok a ∧ m¶veletre,

(2) id(x) ≈ x,

(3) f(g(x)) ≈ (f · g)(x) minden f, g ∈ F m¶veletre, és

(4) f(x ∧ y) ≈ f(x) ∧ f(y) minden f ∈ F m¶veletre.

Minden félháló triviális módon F-félhálóként is tekinthet®, ha az F -beli
egyváltozós m¶veletek mindegyikét identikus leképezésnek de�niáljuk. Ennél
egy sokkal érdekesebb példa a következ®.

1.2. De�níció. Legyen F = 〈F ; ·,−1, id〉 rögzített csoport. Az F halmaz
hatványhalmazán de�niáljuk a P(F ) = 〈P (F );∧, F 〉 F-félhálót a következ®-
képpen:

(1) A ∧B = A ∩B minden A,B ⊆ F elemre, és

(2) f(A) = A · f−1 minden f ∈ F m¶veletre és A ⊆ F elemre.

Az els® fontos állításunk visszavezeti a szubdirekt irreducibilis F-félhálók
vizsgálatát a fent de�niált P(F ) algebra részalgebráinak vizsgálatára.

1.6. Segédtétel. Minden szubdirekt irreducibilis F-félháló izomorf P(F )
valamely U részalgebrájával, amelynek létezik egy egyértelm¶en meghatáro-

zott M ⊆ F eleme, melyre a következ®k teljesülnek:

(1) M monoid, azaz id ∈M és M ·M = M ,
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(2) A = M ·A minden A ∈ U elemre, és

(3) M =
⋂
{A ∈ U | id ∈ A }.

Ezen segédtétel felhasználásával könnyen adódik a véges szubdirekt irre-
ducibilis F-félhálók, illetve a lokálisan véges F csoportok esetében az összes
szubdirekt irreducibilis F-félháló jellemzése (az 1.4. Állítás és 1.7. Követ-
kezmény). Ezekben a speciális esetekben az U algebra tartalmazza az üres
halmazt, ésM részcsoport F-ben. Nem meglep®, hogy ezek az elemek fontos
szerepet játszanak az egyszer¶ F-félhálók következ® fontos osztályában is.

1.8. De�níció. Az F csoport minden M részcsoportjára legyen S(M) a
P(F ) F-félháló azon részalgebrája, amelynek elemei az üres halmaz és M
jobb oldali mellékosztályai.

S(M) olyan �lapos� félháló, amelyben az üres halmaz a zéruselem, M
jobb oldali mellékosztályai az atomok, és az F csoport tranzitív permutáció-
csoportként hat az atomok halmazán. Az S(M) algebrák pontosan azokat
az egyszer¶ F-félhálókat írják le, amelyeknek a félhálórendezésre nézve van
legkisebb eleme és legalább egy atomja.

J. Jeºek a [11] cikkében leírta az egyszer¶, két egymással is felcserélhet®
automor�zmussal b®vített félhálókat, azaz a 〈Z × Z; +〉-félhálók varietásá-
ban az egyszer¶ algebrákat. Ennek tetsz®leges kommutatív F csoportra való
kiterjesztése a [19] dolgozat legfontosabb eredménye. Az el®z® S(M) egy-
szer¶ F-félhálókon kívül a lineáris félhálórendezéssel rendelkez® következ®
F-félhálók is fontos szerepet játszanak:

1.13. De�níció. A kommutatív F csoportnak a valós számok 〈R; +〉 additív
csoportjába történ® minden nemtriviális β homomor�zmusára de�niáljuk az
Rβ = 〈R;min, F 〉 F-félhálót a következ®képpen:

(1) min(a, b) a valós számok természetes rendezése szerinti kisebbik szám,
és

(2) f(a) = a− β(f) minden f ∈ F m¶veletre és a, b ∈ R számokra.

1.16. De�níció. A β : F → 〈R; +〉 homomor�zmust s¶r¶nek nevezzük, ha
minden valós ε > 0 számhoz létezik olyan f ∈ F elem, hogy 0 < β(f) ≤ ε.

Ha β az 1.13. de�nícióban nem s¶r¶, akkor β képe az 〈R; +〉 csoportban
〈Z; +〉-szal izomorf részcsoportot alkot. Ezt külön esetnek fogjuk tekinteni:

1.18. De�níció. A kommutatív F csoportnak az egész számok 〈Z; +〉 addi-
tív csoportjára történ® minden szürjektív α homomor�zmusához de�niáljuk
a Zα = 〈Z;min, F 〉 F-félhálót a következ®képpen:

(1) min(a, b) az egész számok természetes rendezése szerinti kisebbik szám,
és

(2) f(a) = a− α(f) minden f ∈ F m¶veletre és a, b ∈ Z számokra.
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1.21. Tétel. Ha F kommutatív csoport, akkor minden egyszer¶ F-félháló a

következ® egyszer¶ algebrák valamelyikével izomorf:

(1) SM , ahol M az F csoport valamely részcsoportja,

(2) Zα, ahol α : F → 〈Z; +〉 szürjektív csoport-homomor�zmus, és

(3) az Rβ algebra bármely részalgebrája, ahol β : F → 〈R; +〉 s¶r¶ csoport-

homomor�zmus.

A felsorolt algebrák páronként nem izomorfak, kivéve azt az esetet, amikor β1

és β2 s¶r¶ csoport-homomor�zmusok, S1 és S2 rendre az Rβ1 és Rβ2 algebrák

részalgebrái, és léteznek olyan valós t > 0 és d számok, hogy β2 = tβ1 és

S2 = tS1 + d.

Végezetül megemlítjük, hogy a nemkommutatív eset ennél bonyolultabb.
A [19] cikkben példát adunk olyan egyszer¶ F-félhálóra, amelynek van leg-
kisebb eleme, de nincs atomja, és félhálórendezése nem lineáris.

Dualitáselmélet és a többségi függvény probléma

A dualitáselmélet a klasszikus Pontrjagin-, Stone-, illetve Priestley-féle duali-
tás közös általánosításaként fejl®dött ki (lásd [6]). Az elmélet szerint algebrák
valamely A osztálya és a köztük létez® homomor�zmusok alkotta kategória
duálisan ekvivalens egy megfelel®en választott topológiai struktúrák X osz-
tályának és folytonos, struktúrameg®rz® függvényeinek kategóriájával. Az
A osztály minden esetben valamely P ∈ A algebra által generált kváziva-
rietás. Az X osztály valamely P∼ ∈ X topológiai struktúra hatványainak
zárt részstruktúráival izomorf struktúrák osztálya. Továbbá a P algebra és
a P∼ topológiai struktúra alaphalmaza mindig megegyezik. A részleteket ke-
rülve megjegyezzük, hogy az A ∈ A algebra A∼ ∈ X duálisának pontjai a
ϕ : A → P homomor�zmusok; illetve az X∼ ∈ X topológiai struktúra X ∈ A
duálisának elemei az f : X∼ → P∼ folytonos, struktúrameg®rz® függvényei.

Példa. A Pontrjagin-féle dualitás esetében A az Abel-féle csoportok varie-

tása, P a komplex számok multiplikatív csoportjának P = {z ∈ C : |z| = 1}
részhalmazán értelmezett 〈P ; ·,−1, 1〉 egységkörcsoport, X a kompakt topoló-

gikus Abel-féle csoportok kategóriája, és végezetül P∼ = 〈P ; ·,−1, 1, τ〉, ahol τ
a komplex számsík topológiájának az egységkörre való megszorítása.

Példa. A Stone-féle dualitás esetében A a Boole-algebrák varietása, P =
〈{0, 1};∧,∨, ′, 0, 1〉 a kételem¶ Boole-algebra, X a teljesen szétes® Hausdor�-

terek kategóriája, és P∼ = 〈{0, 1}; τ〉, ahol τ a diszkrét topológia. Könnyen

látható, hogy az A ∈ A Boole-algebra ultra�lterei éppen az A algebra P-be

men® homomor�zmusainak felelnek meg.

Példa. A Priestly-féle dualitás esetében A a korlátos disztributív hálók va-

rietása, P = 〈{0, 1};∧,∨, 0, 1〉 a kételem¶ korlátos disztributív háló, X a

teljesen rendezésszétes® terek kategóriája, és P∼ = 〈{0, 1};≤, τ〉, ahol τ a
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diszkrét topológia. Könnyen látható, hogy az A ∈ A korlátos disztributív há-

ló prím�lterei éppen az A algebra P-be men® homomor�zmusainak felelnek

meg.

Azt mondjuk, hogy a P algebra rendelkezik természetes dualitással, ha
létezik olyan P∼ topológiai struktúra, amelyre a dualitáselmélet által megha-
tározott módon, a P által generált A kvázivarietásnak a P∼ által generált X
kategória duális reprezentációja. Nem minden algebra rendelkezik természe-
tes dualitással, és nem világos, hogy ez a tulajdonság egyáltalán eldönthet®-e
véges algebrákra. Ezt a problémát nevezzük természetes dualitási problémá-

nak.
Nagy áttörést jelentett a dualitáselmélet vizsgálatában a következ® ered-

mény, amely algebrák egy jelent®s osztályára a természetes dualitási problé-
mát tisztán algebrai problémára redukálta. A P algebra t kifejezésfüggvényét
többségi függvénynek nevezzük, ha az teljesíti a

t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, . . . , x, y) ≈ x

azonosságokat. Egyesítés-féligdisztributívnak nevezünk egy hálót, ha abban
teljesül az

x ∨ y = x ∨ z =⇒ x ∨ (y ∧ z) = x ∨ y

kváziazonosság. Az A ∈ A algebra kongruencia-egyesítésféligdisztributív, ha
A kongruenciahálója egyesítés-féligdisztributív.

Tétel (B. A. Davey, L. Heindorf és R. McKenzie [5]). Tetsz®leges véges P
algebrára és az általa generált A kvázivarietásra a következ® állítások ekviva-

lensek:

(1) P rendelkezik többségi kifejezésfüggvénnyel.

(2) P rendelkezik természetes dualitással, és A minden algebrája kongru-

enciadisztributív.

(3) P rendelkezik természetes dualitással, és A minden véges algebrája kon-

gruencia-egyesítésféligdisztributív.

A többségi függvény problémát az el®z® tétel motiválta, ahol véges al-
gebráról kell azt eldönteni, hogy rendelkezik-e többségi kifejezésfüggvénnyel.
Természetesen, ha tudnánk a többségi függvény változóinak számát, akkor
magát a többségi függvényt már könnyen megkereshetnénk, mivel a megfelel®
számú elem által generált szabad algebrát egyszer¶ kiszámolni. A nehézséget
az jelenti, hogy nem tudjuk a többségi kifejezésfüggvény változóinak számát,
ha egyáltalán létezik; de még fels® korlátunk sincs rá.

Többségi kifejezésfüggvénnyel rendelkez® algebrák természetes módon
fordulnak el® az univerzális algebra különböz® területein. Például minden
háló rendelkezik az

(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x)
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háromváltozós többségi függvénnyel. E. L. Post [27] klasszi�kációjából kide-
rül, hogy kételem¶ alaphalmazon majdnem minden klón tartalmaz többségi
m¶veletet. Ismert, hogy minden többségi függvénnyel rendelkez® algebra
kongruenciadisztributív varietást generál, és véges azonosságbázissal rendel-
kezik (feltéve, hogy csak véges sok alapm¶velete van).

Könnyen eldönthet®, hogy egy véges algebra kongruenciadisztributív va-
rietást generál-e, mert elég a véges sok háromváltozós kifejezésfüggvény kö-
zött Jónsson-függvényeket keresni. Ha a többségi függvény probléma eldönt-
hetetlen lenne, akkor az el®z® megjegyzések alapján a többségi függvény
probléma kongruenciadisztributív varietást generáló algebrákra is eldönthe-
tetlen volna, és a tétel szerint így a természetes dualitási probléma is eldönt-
hetetlen lenne.

A parciális többségi függvény eldönthetetlensége

R. McKenzie a következ® megközelítéssel próbálta a többségi függvény prob-
lémának az eldönthetetlenségét bizonyítani:

2.1. De�níció. Legyen t(x1, . . . , xn) az A algebra kifejezésfüggvénye, és le-
gyen S ⊆ A. Azt mondjuk, hogy t parciális többségi függvény az S halmazon,
ha a

t(y, x, . . . , x) = t(x, y, x, . . . , x) = · · · = t(x, . . . , x, y) = x

egyenl®ség teljesül minden x, y ∈ S elemre.

Könnyen látható, hogy a t kifejezésfüggvény akkor és csak akkor több-
ségi függvénye az A algebrának, ha az A által generált varietás két elem
által generált szabad algebrájában t parciális többségi függvény a generáló
elemek {x, y} halmazán. Talán ez motiválta a parciális többségi függvény
eldönthet®ségét vizsgáló [23] cikket, amelyben R. McKenzie bebizonyítja,
hogy a parciális többségi függvény létezése eldönthetetlen kételem¶ részhal-
mazokra. A disszertáció második fejezetében ezt az eredményt terjesztem ki
olyan részhalmazokra, amely az algebra két elemén kívül minden más elemet
tartalmaz.

2.2. Tétel. Nem létezik olyan algoritmus, amely tetsz®leges véges A algeb-

ráról és r, w ∈ A elemekr®l eldöntené, hogy A rendelkezik-e parciális többségi

kifejezésfüggvénnyel az A \ {r, w} halmazon.

Ez a tétel nem t¶nik jelent®snek utólag, a többségi függvény létezésének
eldönthet®ségét ismerve. Mindenesetre a bizonyításban használt technikák
önmagukban is érdekesek, és esetleg hasznosak lehetnek más kifejezésfügg-
vények létezésével foglalkozó problémák eldönthet®ségének vizsgálatakor.

A bizonyításban Minsky-gépeket használunk, amelyek lényegében ekvi-
valensek a Turing-gépekkel (lásd [25, 26]). A Minsky-gép végtelen szalag he-
lyett csak két regiszterrel rendelkezik, amelyek tetsz®leges nemnegatív egész
értéket vehetnek fel. A gép programja állapotok, köztük egy kezd®- és egy
leállóállapot, illetve parancsok véges halmazaiból áll. Kétféle parancs van: az
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els® az adott állapotban az egyik regiszter aktuális értékét eggyel megnöveli,
majd a gépet egy új állapotba lépteti. A másik fajta parancs végrehajtá-
sakor a gép el®ször megnézi, hogy milyen érték van az adott regiszterben;
ha az nem nulla, akkor a gép azt eggyel csökkenti, és új állapotba lép; ha
nulla, akkor egy másik állapotba lép. A gép számításán a gép állapotainak és
regiszterei értékeinek a lépések során felvett (akár végtelen) sorozatát értjük.

Mivel a Minsky-gépek megállási problémája eldönthetetlen, ezért minden
M Minsky-géphez elég (egy algoritmus segítségével leírható) olyan speciális
r, w elemekkel rendelkez® A(M) algebrát de�niálni, amelynek akkor és csak
akkor van parciális többségi kifejezésfüggvénye az alaphalmaz A(M)\{r, w}
részhalmazán, ha M megáll.

Az A(M) algebra konstruckiójában az alaphalmaz, illetve a m¶veletek
halmaza rendre M állapotainak, illetve parancsainak halmazától függ. A
konstrukcióban az a célunk, hogy M megálló számítását bekódoljuk A(M)
valamely parciális többségi kifejezésfüggvényébe. A bizonyítás legkritiku-
sabb része az, amikor megmutatjuk, hogyM megálló számítása felfedezhet®
minden olyan t kifejezésfüggvény alapm¶veletekb®l felépített fájában, amely
az A(M) \ {r, w} halmazon parciális többségi függvény. Az alapm¶vele-
tek megfelel® de�níciójával elérhet®, hogy ilyen esetben t lényegében lineáris
szerkezet¶ legyen, amely M állapotainak egy sorozatát kódolja. Megfelel®-
en de�niálva az alapm¶veleteket, például úgy, hogy a különböz® m¶veletek
értékkészlete különböz® legyen, könnyen elérhet® az is, hogy az állapotok
sorozata lényegében helyes legyen azt az esetet kivéve, amikor a következ®
állapot attól függ, hogy a regiszter tartalma nulla-e vagy nem. Ezt a problé-
mát úgy oldjuk meg, hogy az állapotok mellé meg azt is bekódoljuk, hogy az
adott lépésben az egyes regiszterek értéke nulla-e. Természetesen a regiszter
pillanatnyi értékét, ami tetsz®legesen nagy természetes szám lehet, nem tud-
juk bekódólni, mivel az A(M) algebrának csak véges sok eleme és m¶velete
lehet. Már csak azt kell ellen®riznünk, hogy a fában kódolt állapotok és a
regiszterek nulla értékét jelz® kódok a Minsky-gép számításának megfelel®en
vannak-e elhelyezve. Ezt a fában el®forduló változók megfelel® párosításával
oldjuk meg, felhasználva azt, hogy ismerjük t értékét a parciális többségi
függvény által el®írt helyeken.

A w ∈ A(M) elemnek (lényegében) megvan az úgynevezett elnyel® tu-

lajdonsága, azaz minden f(x1, . . . , xn) alapm¶veletre a

w ∈ {x1, . . . , xn} =⇒ f(x1, . . . , xn) = w

tulajdonság teljesül. Az alkalmazott módszer a w elem segíségével jelzi, ha
a t kifejezésfüggvény alakja vagy az általa bekódolt állapotsorozat nem felel
meg a megálló számításnak. Ha valahol eltérés van, akkor a fában lev® vala-
mely alapm¶velet a megfelel® többségi (x, . . . , x, y, x, . . . , x) kiértékelésnél a
w elemet adja vissza, ami automatikusan terjed a fában a gyökér felé. Ebb®l
az következne, hogy t(x, . . . , x, y, x, . . . , x) = w, ami pedig ellentmondás.

Valószín¶, hogy a 2.2. tételt ki lehet terjeszteni az alaphalmaz csak egyet-
lenegy elemét, w-t kizáró részhalmazára, amit a [13] kézirat eredményéhez
hasonlóan, legegyszer¶bben parciális algebrákra lehet megfogalmazni:
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1. Probléma. Véges parciális algebráról eldönthet®-e az, hogy rendelkezik

olyan kifejezésfüggvénnyel, amely minden többségi kiértékelésnél értelmezve

van, és teljesíti a többségi függvény azonosságait?

A többségi függvény eldönthet®sége

A disszertáció utolsó fejezetében bebizonyítom, hogy a többségi függvény
probléma eldönthet®. Mivel a bizonyítás során a klónok nyelvezetét haszná-
lom, magát a tételt is így mondom ki:

3.17. Tétel. Véges halmazon de�niált véges sok m¶veletr®l eldönthet®, hogy

az általuk generált klón tartalmaz-e többségi függvényt.

A bizonyítás a következ® ötletre épül. A m¶veletek és a rajtuk értelme-
zett kompozícióoperátor használata helyett a m¶veletek olyan osztályozását
keressük, amelyben

(1) a többségi függvények az osztályozás egyik blokkját alkotják,

(2) a blokkok halmazán be lehet vezetni a kompozíció fogalmát, és

(3) elég kevés blokk van ahhoz, hogy véges lépésben meg lehessen határozni
a blokkok kompozícióra zárt halmazait.

Ezek alapján talán nem annyira meglep® a következ® de�níció, melynek ki-
mondásához szükséges néhány jelölés bevezetése. Legyen ω, illetve ω+ rendre
a véges, illetve megszámlálható számosságok halmaza. Az A halmazon értel-
mezett m¶veletek halmazát OA-val jelöljük, továbbá minden n ∈ ω egészre
legyen O(n)

A = AAn
, ami az A halmazon értelmezett n-változós m¶veletek

halmaza.

3.1. De�níció. Minden f ∈ O(n)
A m¶veletre és i ∈ ω egészre de�niáljuk az

f m¶velet i-edik polimerjének nevezett f |i ∈ O(2)
A kétváltozós m¶veletet:

f |i(x, y) =

{
f(x, . . . , x,

i.
^
y , x, . . . , x) ha 0 ≤ i < n,

f(x, . . . , x) ha i ≥ n,

ahol y az i-edik pozícióban szerepel az els® esetben. Az f m¶velet polimer-
jeinek multihalmazát f karakterisztikus függvényének nevezzük, ami formá-
lisan a

χf (b) = |{ i ∈ ω : f |i = b }|

formula által de�niált χf : O(2)
A → ω+ leképezés.

Könnyen belátható, hogy a többségi függvények jellemezhet®ek polimer-
jeik segítségével úgy, hogy minden polimernek x-szel kell egyenl®nek lennie.
Következésképp az összes többségi függvénynek ugyanaz a χnu leképezés a
karakterisztikus függvénye, amelyet a

χnu(b) =

{
ω ha b(x, y) ≈ x,

0 egyébként
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formula de�niál. Legyen XA az A halmazon értelmezett m¶veletek karakte-
risztikus függvényeinek halmaza. Tehát a karakterisztikusfüggvény-képzés

X : OA → XA, X : f 7→ χf

operátorának magja teljesíti az (1)-es célkit¶zésünket.
A CF kompozícióoperátor technikai de�nícióját itt nem adjuk meg. Elég

most annyit tudnunk róla, hogy megkülönböztetjük a �küls®� F ⊆ OA m¶-
veleteket azoktól a �bels®� elemekt®l, amelyekre az F-beli m¶veleteket alkal-
mazzuk. M¶veletek minden F ,G ⊆ OA halmazaira CF (G) tartalmazza az
összes olyan

t(y1, . . . , yk) = f
(
g(x11, . . . , x1n), . . . , g(xm1, . . . , xmn)

)
m¶veletet, ahol f ∈ F és g ∈ G rendre m- és n-változós m¶veletek, továbbá
{x11, . . . , xmn} ⊆ {y1, . . . , yk}. A karakterisztikus függvények kompozícióo-
perátorának jelölésére is ugyanazt a CF szimbólumot használjuk: így minden
U ⊆ XA halmazra CF (U) ⊆ XA. A két kompozícióoperátor közötti kapcso-
latot, a (2)-es célkit¶zés valódi tartalmát, a következ® segédtétel fejezi ki.

3.6. Segédtétel. XCF (G) = CFX(G) tetsz®leges F ,G ⊆ OA halmazokra.

Az eddigiek alapján az F m¶veletek által generált 〈F〉 klón akkor és csak
akkor tartalmaz többségi függvényt, ha az egyváltozós projekció χid karak-
terisztikus függvényéb®l kiindulva a CF kompozícióoperátor véges sokszori
alkalmazásával χnu megkapható. Sajnos a (3)-as célkit¶zés megvalósításától
még nagyon messze vagyunk; valójában annak csak egy gyengített változatát
bizonyítjuk.

Tegyük fel, hogy mind az A alaphalmaz, mind az F ⊆ OA m¶veletek
halmaza véges, továbbá azt, hogy 〈F 〉 tartalmaz többségi függvényt. Lo-
vász Lászlónak a Kneser-gráfok kromatikus számáról szóló tételét (lásd [18])
felhasználva megmutatható, hogy 〈F 〉-nek tartalmaznia kell a többségi függ-
vény azonosságaihoz nagyon hasonló technikai feltételt teljesít® g m¶veletet
is, amelynek változószáma csak A elemszámától függ, így az megkereshet®.

A g m¶velet segítségével egy jólrendezett parciális rendezést de�niálunk
a karakterisztikus függvények valamely részhalmazán. Megmutatjuk, hogy
ha a kompozícióoperátort (karakterisztikus függvényekb®l álló) �lterre alkal-
mazzuk, akkor ismét �ltert kapunk. A kapott �lter minimális elemei (melyek
száma szükségképpen véges) az eredeti �lter minimális elemeib®l kiszámít-
hatók. Ha a kompozícióoperátort ismételten alkalmazzuk, akkor �lterek egy,
a tartalmazásra nézve b®vül® láncát kapjuk. Ismert azonban, hogy jólren-
dezett parciális rendezés �lterei nem alkothatnak végtelen, szigorúan b®vül®
láncot, tehát ennek az eljárásnak véges lépésben meg kell állnia, és így a ka-
rakterisztikus függvények kompozícióoperátor szerinti lezártja kiszámítható.

Ahogy már utaltunk rá, az [5] cikk eredményét felhasználva a bizonyí-
tott tétel következményeként azt is megkaptuk, hogy kongruencia-egyesítés-
féligdisztributív varietásba tartozó véges algebrákra a természetes dualitás
problémája eldönthet®.
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Mivel legfeljebb r-változós m¶veletekkel rendelkez® algebrából csak véges
sok de�niálható egy n-elem¶ halmazon, a többségi függvény eldönthet®ségé-
b®l az is következik, hogy létezik olyan N(n, r) rekurzív függvény, amely
felülr®l korlátozza a többségi függvénnyel rendelkez® ilyen algebrák többsé-
gi függvényeinek minimális változószámát. Következésképpen, minden ilyen
A algebrára elég a legfeljebb N(n, r) változójú kifejezésfüggvények között
keresni a többségi függvényt. Ha ilyet nem találunk, akkor A-nak nincs
többségi kifejezésfüggvénye. Tudjuk, hogy létezik ilyen rekurzív függvény,
de egyel®re nincs rá formulánk.

Nagyon érdekes megoldatlan probléma kapcsolódik az úgynevezett kény-
szerkielégíthet®ségi problémához (constraint satisfaction problem). A prob-
lémát itt mi nem de�niáljuk; az érdekl®d® olvasónak T. Feder és M. Y. Vardi
[8] cikkét ajánljuk. A [10] cikk eredménye szerint, ha relációk egy Γ halma-
zának van kompatibilis többségi függvénye, akkor a CSP(Γ) kényszerkielé-
gíthet®ségi probléma polinomiális id®ben megoldható. Ezért (is) érdekes a
többségi függvény relációkra vonatkoztatott problémája:

2. Probléma. Véges halmazon értelmezett relációk véges halmazáról eldönt-

het®-e, hogy létezik a relációkkal kompatibilis többségi függvény?

Egyel®re nem ismerjük erre a problémára a választ. Tudjuk azt (lásd
pl. [31]), hogy ha relációk (akár végtelen) Γ halmazához létezik kompatibilis
többségi függvény, akkor mind a Γ által generált relációklón, mind a relá-
ciókkal kompatibilis m¶veletek klónja végesen generált. Utolsó problémánk
ehhez a kérdéskörhöz kapcsolódik:

3. Probléma. Véges, közös alaphalmazon értelmezett m¶veletek F és relá-

ciók Γ halmazairól eldönthet®-e, hogy az 〈F〉 klón megegyezik a Γ-val kom-

patibilis m¶veletek klónjával?
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