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Introduction

Algebras with a semilattice operation, which commutes with all other oper-
ations, have been studied in various forms. In many respects these algebras
behave similarly to modules. For example, it is proved in [15] that if a locally
finite variety of type-set {5} satisfies a term-condition similar to the term-
condition for abelian algebras, then it has a semilattice term that commutes
with all other term operations.

Within the class of modes—that is, idempotent algebras whose basic
operations commute with each other—those having a semilattice term oper-
ation play an important role (see [29, 30]); these algebras are called semilat-
tice modes. The structure of locally finite varieties of semilattice modes is
described in [14].

An interesting class of algebras with a commuting semilattice operation
arises if we add automorphisms, as basic operations, to a semilattice. This is
a special case of the construction studied in [3]. In general, one can expand
any variety )V by a fixed monoid F of endomorphisms in a natural way. The
expanded variety is the variety of V-algebras A equipped with new unary
basic operations, acting as endomorphisms on A. In this construction we
keep F fixed, and do the same when F is a group. We remark that there
is a different approach, when the group F is not kept fixed; what one gets
then is the theory of varieties of group representations, where the objects are
groups acting on some semilattices (see [1]).

In a number of different cases the simple and subdirectly irreducible alge-
bras of the expanded variety have been determined. In [11] J. Jezek described
all simple algebras in the variety of semilattices expanded by two commuting
automorphisms. In this case the monoid F is the free commutative group
with two generators. In [12| he also described all subdirectly irreducible
semilattices with a single distinguished automorphism.

In Chapter 1 we generalize the main result of 11| to arbitrary com-
mutative group F, that is, we describe all simple algebras in the variety
of semilattices expanded by an abelian group of automorphisms (published
in [19]). The same results were discovered independently by R. El Basher
and T. Kepka in [7]. In fact, their results are slightly more general: they
study simple semimodules over commutative semirings, where addition is a
semilattice operation.

General duality theory is capable of describing various well-known duali-
ties—for example Pontryagin’s, Stone’s and Priestley’s—between a cate-
gory A of algebras with homomorphisms and a category X of topological
structures with continuous structure preserving maps. In all these cases the
class A is a quasi-variety generated by a single algebra P € A, and X is
the class of closed substructures of powers of an object P € X having the
same underlying set as P. By this theory, not every quasi-variety admits a
natural duality. Therefore, to leverage the power of duality, it is natural to
ask which finitely generated quasi-varieties admit a natural duality. Is this
characterization possible? Is it decidable of a finite algebra P whether the



quasi-variety generated by P admits a natural duality? This second ques-
tion is known as the natural duality problem. Currently, we do not know the
answer to this problem, but many expect it to be undecidable.

The natural duality problem was partially reduced to a pure algebraic
problem in the following way. We call a term ¢ of an algebra P a near-
unanimaty term if it satisfies the following identities:

t(y,x,...,z) = t(x,y,z,...,¢) =~ - = t(z,...,x,y) = T

Near-unanimity term operations come up naturally in the study of algebras.
For example, all lattices have a ternary near-unanimity term t(x,y, z) = (z A
y)V(yAz)V(zAz). From E. L. Post’s classification [27] we know that almost
all clones on a two element set contain a near-unanimity operation; the
exceptions are those that are contained in (A,0,1), (+,0,1), (=) or in their
duals. It is also well known that an algebra having a near-unanimity term
lies in a congruence distributive variety, and has a finite base of identities
provided it is of finite signature (see [31]).

B. A. Davey and H. Werner proved in [6] that in the presence of a near-
unanimity term of P, the quasi-variety A generated by P admits a natural
duality. The converse was proved in [5] under the assumption that A is
congruence join-semi-distributive: if A admits a natural duality and is con-
gruence join-semi-distributive then P has a (finitary) near-unanimity term.
This theorem, known as the near-unanimity obstacle theorem, implies that
if it were undecidable of a finite algebra whether it has a near-unanimity
term, then the natural duality problem would also be undecidable. We call
the premise of this implication the near-unanimity problem, which was posed
in [5] over ten years ago.

Clearly, the algebra P has a near-unanimity term operation ¢ if and only
if the equations

ty,z,...,z) =t(x,y,z,...,x) = =t(x,...,x,y) =

hold for the generator elements x,y of the two-generated free algebra in
the quasi-variety A generated by P. Probably this observation motivated
R. McKenzie’s unpublished result [23] where he proves that it is undecidable
of a finite algebra P and a pair z,y € P of fixed elements whether P has a
term ¢ that behaves as a near-unanimity term on {z, y}. This result does not
imply the undecidability of the near-unanimity problem because the algebras
used in his construction are not freely generated by the elements z,y in the
quasi-variety they generate.

The key result presented in Chapter 2 is the improvement of R. McKen-
zie's result to a fixed |P| — 2 element subset, and the simplification of his
elaborate construction (to appear in [20]). The basic idea, however, is intact:
the use of Minsky machines—which are equivalent to Turing machines—and
the encoding of their computations in the terms of P. The method used
in the proof relies on an absorbing element as the indicator of defects. An
improvement of this method to |P| — 1 elements might be possible, which



could be formulated, analogously to the results in [13], as the undecidability
of the near-unanimity problem for partial algebras:

Problem 1. Given a finite partial algebra, decide whether it has a term that
1s defined on all near-unanimous evaluations and satisfies the near-unanimity
1dentities.

In Chapter 3 we show that the near-unanimity problem is decidable,
which is a rather surprising development after the negative partial results
(unpublished, see [21]). As an immediate consequence of the decidability of
the near-unanimity problem and the near-unanimity obstacle theorem, the
natural duality problem for finite algebras that generate a congruence join-
semi-distributive variety is also decidable. However, the decidability of the
natural duality problem in general is still open.

The proof of the decidability of the near-unanimity problem relies on the
study of the following special fragment of clones. Given an operation ¢, we
consider those binary operations—called polymers—with their multiplicities
that arise as t(z,...,x,y,,...,z) where the lone y is at a fixed coordi-
nate. Clearly, near-unanimity operations are characterized by their binary
polymers; namely they all must be equal to x. By studying the polymers
of composite operations, we arrive to a notion of composition for binary
polymers, which we use to solve the near-unanimity problem.

Since there are only finitely many algebras on a fixed n-element set whose
basic operations are at most r-ary, by the decidability of the near-unanimity
problem, there exists a recursive function N(n,r) that puts an upper limit
on the minimum arity of a near-unanimity term operation for those alge-
bras that have one. Consequently, given an algebra P whose operations are
at most r-ary, one can decide the near-unanimity problem by simply con-
structing all at most N (|P|,r)-ary terms and checking if one of them yields a
near-unanimity operation. If no such is found, then P has no near-unanimity
term operation. We know that such recursive function N(n,r) exists, but
currently we do not have a formula for one.

A very interesting group of open problems is related to the constraint
satisfaction problem, which we do not define here and refer the reader to [8]
for details. It is proved in [10] that if a set " of relations on a set admits
a compatible near-unanimity operation, then the corresponding constraint
satisfaction problem CSP(I") is solvable in polynomial time. Therefore, it is
natural to consider the near-unanimity problem for relations:

Problem 2. Given a finite set I' of relations on a set, decide whether there
exists a near-unanimity operation that is compatible with each member of T.

Currently we are unable to solve this problem, even in the light of our
result. We know that if a clone has a near-unanimity operation, then both the
clone and its dual relational clone are finitely generated (see [31]). Inspired
by this fact, we ask the following:



Problem 3. Given a finite set of operations and a finite set of relations on
the same underlying set, decide if the functional and relational clones they
generate are duals of each other.

The three chapters of the dissertation are self contained, independent
of each other, and are based on the essential parts of [19, 20| and [21],
respectively. We assume basic knowledge of universal algebra and direct the
reader to either [2] or [24] for reference. Although the study of the near-
unanimity problem stems from the study of natural dualities (see [4, 5]), the
reader is not required to know this theory.



1 F-semilattices

In [3] one can find the definition of the expansion of a variety by a fixed
monoid of endomorphisms, and also some basic properties of this construc-
tion. In this section we need only the following special case.

Definition 1.1. An algebra S = (S; A, F') with a binary operation A and a
set F' of unary operations is an F-semilattice, if F = (F;-, 7!, id) is a group
and S satisfies the following identities:

1) the operation A is a semilattice operation,

2) id(z) ~

)
)
) flg(x)) =~ (f - g)(x) for all f,g € F, and
) fzAy)~ f(z) A f(y) forall feF.

In other words, an F-semilattice is a semilattice expanded with a set F'
of new operations which forms an automorphism group of the semilattice.
Usually the group F will be fixed. Note that every semilattice can be con-
sidered as an F-semilattice in a trivial way: every unary operation of F' acts
as the identity function. Now we give a much more typical example of an
F-semilattice.

(
(
(3
(

4

Definition 1.2. Let P(F) = (P(F);A,F) be the F-semilattice which is
defined on the set P(F) of all subsets of F' by setting

(1) ANB=AnBforal A,BCF, and
(2) f(A)=A-flforall fc Fand ACF.

Thus the meet operation is intersection, and every unary operation f € F
acts by taking complex product with f~! on the right hand side. We show
that P(F') contains all subdirectly irreducible F-semilattices.

Proposition 1.3. Every subdirectly irreducible F-semilattice can be embed-
ded in P(F).

Proof. Let S be a subdirectly irreducible F-semilattice. For every element
s € S we define a homomorphism ¢ from S to P(F') as follows:

ps: 8= P(F); ps(x)={feF|flz)>s} (1.3a)

This function is indeed a homomorphism, since

ps(xhNy)={feF|flxny) >s}
={feF|flx)nfly)=s}
={feF|f(x)>sand f(y) > s}
={feF|flx)=s}n{feF|fly)>s}

= 0s(z) N ps(y),

ot



and for any unary operation g € F' we have

ps(g(x)) ={feF|flg(x)>s}
={feF|(f 9)(z)>s}
={h-g " €F|h(z)>s}
={heF|h(x)>s} g
= ps(z) - !

= g(ps(x)).

Now we show that at least one of these homomorphisms is an embedding
from S to P(F). Let (z,y) € [\,cqker¢s be an arbitrary pair of elements.
Since (z,y) € kerp,, therefore ¢ (z) = ¢z(y). We have id € ¢,(x) by
equation (1.3a), so id € ¢,(y), thus again by equation (1.3a) we conclude
that y > x. A similar argument shows that x > y, thus z = y. This
proves that the congruence [,cg ker ¢, is the equality relation on S. But S
is subdirectly irreducible, therefore for at least one element s € S the kernel
of s is the equality relation. Hence ¢; is an embedding. O

We have seen that every subdirectly irreducible F-semilattice is isomor-
phic to some subalgebra of P(F'). So it is natural to ask which subalgebras
of P(F) are in fact subdirectly irreducible. The following corollary states
that all finite subalgebras of P(F') are subdirectly irreducible. However, it
is not hard to construct an example showing that the infinite subalgebras of
P(F') are not necessarily subdirectly irreducible.

Proposition 1.4. The finite subdirectly irreducible F-semilattices are exactly
the nontrivial finite subalgebras of P(F).

Proof. We already know from Proposition 1.3 that the finite subdirectly
irreducible F-semilattices are subalgebras of P(F'). Conversely, we must
show that each nontrivial finite subalgebra of P(F') is indeed subdirectly
irreducible. Let U be a finite subalgebra of P(F’), and suppose that U has
more than one element. First we will define a pair of elements in U, and
subsequently we will show that every nontrivial congruence of U contains
this pair. Clearly, this is enough to ensure that U is subdirectly irreducible.
Consider the pair (M, )) where

M=({AcUlide A}. (1.4a)

The set on the right hand side of equation (1.4a) is not empty. In order to
verify this, we choose an element A of U different from the empty set. This
can be done, since U has more than one element. Let a be an arbitrary
element of A. From Definition 1.2 we see that a(4) = A-a~!, and since
id € A-a !, we conclude that id € a(A). Therefore the set on the right hand
side of equation (1.4a) contains the element a(A) of U, thus it is nonempty.
Furthermore, this set is finite, since U is finite. Finally, if we use the meet



operation of P(F), we get that the set M is in U. With a similar argument
it is easy to verify that the empty set is also in U. To this end we need to
take the intersection of all elements of U.

Now we show that M is a subgroup of F. It is obvious that id € M.
Let m be an arbitrary element of M. Then id € M -m~! = m(M), so
by equation (1.4a) we get M -m~' D M. If we multiply this inclusion by
m on the right, we conclude that M O M - m for every element m of M.
Therefore M is closed under the multiplication of F. To prove that M is
closed under taking inverses also, consider the sets M - mF where k is a
nonnegative integer. Since M € U and M - mF = m™F(M), we see that
these sets are elements of U. But U is finite, so there exist two distinct
integers k and [, such that M - m* = M - m!. We can assume without loss
of generality that k > [. Since k —1 —1 > 0 and M is a monoid, we get
mFt = mF=1oml € M-m! = M - m”, that is, m~' € M. Now we are
ready to complete our proof.

Let 9 be a congruence of U different from the equality relation. Hence
we can choose a pair (A, B) € ¥ with A # B. Without loss of generality we
can assume that A B, thus we can choose an element a € A\ B. For this
element a we have id € a(A), but id € a(B). Let

(C, D) = (a(A) N M, a(B) N M).

Clearly, this pair belongs to ¥. Furthermore, we have id € C and C C M,
thus by equation (1.4a) we conclude that C' equals M. On the other hand,
id € D and D C M. We show that D must be equal to the empty set.
In order to verify this suppose that d is an arbitrary element of D. Then
id € d(D), and since M is a subgroup of F, d(D) is also a subset of M. In
view of equation (1.4a) this means that d(D) = M, thus D equals M. Hence
id € D, a contradiction. So we have shown that (C, D) = (M, ). O

We remark that we have proved more than what we stated in Proposi-
tion 1.4. Namely, in the last paragraph of the proof we have also shown that
M is an atom of U. Since the unary operations of U are automorphisms of
the semilattice reduct of U, we conclude that the atoms of U are exactly the
right cosets of M. So the above proof yields also a proof for the following
lemma.

Lemma 1.5. If a subalgebra U of P(F') contains the empty set and the set
M=({AcUlide A},

where M is a subgroup of F, then U is subdirectly irreducible, and the atoms
i U are exactly the right cosets of M. ]

In view of equation (1.4a) one can define the set M for each subalgebra
U of P(F), but in general M will be neither a subgroup of F nor an element
of U. However, if U is the image of a subdirectly irreducible F-semilattice
under the embedding described in the proof of Proposition 1.3, then M does



enjoy similar properties. Later on we will need these technical properties
which are summarized in the following lemma.

Lemma 1.6. If S is a subdirectly irreducible ¥-semilattice, then S is iso-
morphic to a subalgebra U of P(F). The algebra U can be selected so that
it has a unique element M C F with the following properties:

(1) id e M and M - M = M,
(2) A=M-A forall Ac U, and
B) M=({AeU]|ide A}.

This means that the element M of U—considered as a subset of F—is
a submonoid of F, and every element in U is closed with respect to taking
complex product with M. Furthermore, the element M is the least element
in U which contains the element id € F.

Proof. We will use the embedding ¢, which was defined in the proof of
Proposition 1.3. So suppose that S is a subdirectly irreducible F-semilattice,
s is a fixed element of S, and ¢ is an embedding of S into P(F). Let
U = ¢4(S) and M = ¢4(s). Now we show that for any element A € U the
equality

A={feF|ADM-f} (1.6a)

holds. To verify this, let a € S be an element such that ¢s(a) = A. Since
s is an isomorphism from S to U, we have

A= ps(a)
={feF|fla)=s}

={f e F|psf(a)) 2ps(s)}
={feF|[fles(a)) 2 ps(s)}
={feF|f(A)2M}
={feF|A f'oM}
={feF|ADM-f}.

Since M D M -1id, it follows from equation (1.6a) that id € M. Again
by equation (1.6a) it is easy to see that A O M - A for every element A € U.
Finally, since id € M, we conclude that A = M - A. In particular, for the
element M € U this means that M = M - M. In order to prove (3), let A
be an element of U containing the element id. Then we have A =M - A D
M -id = M. This proves the inclusion C. The reverse inclusion is obvious,
as M is one of the sets that are intersected on the right hand side. O

Corollary 1.7. If F is a locally finite group, then, up to isomorphism, the
subdirectly irreducible F-semilattices are exactly those nontrivial subalgebras
U of P(F) for which the set M =({AecU |id € A} is an element of U.
Furthermore, if U satisfies this condition, then it also has the following
properties:



(1) VeU,
(2) M is a subgroup of F, and
(3) the atoms of U are exactly the right cosets of M.

Proof. In Lemma 1.6 we have proved that each subdirectly irreducible F-
semilattice is isomorphic to a subalgebra U of P(F') such that M € U.

For the converse statement let U be a nontrivial subalgebra of P(F) such
that M € U. We must show that U is subdirectly irreducible. From now on
we will use similar ideas as in the proof of Proposition 1.4. In the same way
as in that proof, we see that M is a submonoid of F. But F is locally finite,
therefore M must be a subgroup of F.

Now we show that U contains the empty set. We will repeatedly use the
fact that M and the elements generated by M in P(F') are in U. Suppose
first that M = F. Then for any element A of U different from the empty
set and for any element a € A, the set a(A) is in U and id € a(A4). By
the definition of M this means that A = F. But U contains more than one
element, so in this case we conclude that U = {F,}. Now let us consider the
case where M is a proper subgroup of F. Then for any element f € F'\ M
we have f~1(M) A M = (), that is, the empty set is again in U.

So far we have verified the properties (1) and (2). Now we can apply
Lemma 1.5 to obtain that U is subdirectly irreducible and has property (3)
as well. O

Up to this point we have proved that every subdirectly irreducible F-
semilattice is isomorphic to some subalgebra of P(F'). Furthermore, we have
seen that the nontrivial finite subalgebras of P(F") are subdirectly irreducible,
and if F is locally finite, then we have described a family of subalgebras of
P(F') which represents all subdirectly irreducible F-semilattices. In both of
these special cases it turned out that these subdirectly irreducible subalge-
bras of P(F') contain the empty set and some subgroup M of F. Now we
will show that such an algebra is simple if and only if it consists of the empty
set and the right cosets of M.

Definition 1.8. If F is a fixed group and M is a subgroup of F, then let
Sar denote the subalgebra of P(F'), the elements of which are the empty set
and the right cosets of M.

Thus the empty set is the least element in Sy, and all the right cosets
of M are atoms. The set F' of unary operations of S, acts as a transitive
permutation group on the set of atoms. It is easy to see that each Sy is a
simple subalgebra of P(F') which has a least element and some atoms. The
following lemma shows that the converse statement is also true.

Lemma 1.9. The subalgebras Syr of P(F) are, up to isomorphism, exactly
those simple F-semilattices that have a least element and some atoms.



Proof. 1t is easy to verify that each subalgebra Sj; is simple, and clearly
contains a least element and some atoms. For the converse, let S be a simple
F-semilattice with a least element 0 and an atom a. By Lemma 1.6, S
is isomorphic to some subalgebra U of P(F'). From the definition of this
embedding we see that the image of 0 is the empty set. Let us denote the
image of a by A. We can assume that id € A, because A is nonempty and
for any element f € A the element f(A) of U is an atom containing the
identity. On the other hand, we also know from 1.6 that in U there exists a
unique element M with properties (1)—(3). In particular, M is a submonoid
of F. Since id € A, we have M C A by Lemma 1.6 (3). But A is an atom,
therefore A must be equal to M, so the submonoid M is an atom in U. Now
we show that this submonoid M is actually a subgroup.

For every element m € M, the set m~1(M) = M - m is an element of
U and a subset of M. But it cannot be a proper subset of M, because M
is an atom, so M -m = M. Therefore M is a subgroup of F. The right
cosets of M are the atoms of U, and together with the empty set they form
a subalgebra of U which is exactly the algebra Sj;. Our last task is now to
show that Sjy; coincides with U.

Consider the equivalence relation ¥ on U which has only one nontrivial
equivalence class, namely the set Sp;. We check that ¢ is a congruence
relation of U. It is clear that every unary operation of U preserves this
relation, since Sy is a subuniverse of U. On the other hand, we know that
the elements of Sy, are the least element and the atoms in U, therefore the
meet operation also preserves . Since U is simple, we conclude that ¢ must
be the full relation on U, so U must be equal to Sy,. O

We have characterized the subdirectly irreducible F-semilattices in two
special cases in Proposition 1.4 and Corollary 1.7. In view of the previous
lemma we can now easily characterize the simple F-semilattices in these
cases. It is enough to observe that in these cases the simple F-semilattices
contain a least element and some atoms. But this is trivial in the first case,
and in the second case it follows from Corollary 1.7.

Corollary 1.10. The finite simple F-semilattices are, up to isomorphism,
exactly the subalgebras Sy of P(F) where M runs over the subgroups of
finite index of F. ]

Corollary 1.11. If F is a locally finite group, then the simple F-semilattices
are, up to isomorphism, exactly the subalgebras Sys of P(F). ]

The rest of this section is devoted to the description of all simple F-
semilattices in the case when F is a fixed commutative group. We will see
that there are two types of simple F-semilattices in this case. One of the
types consists of the algebras isomorphic to Sy, as in Corollaries 1.10 and
1.11. The other type of simple F-semilattices will turn out to be repre-
sentable by an F-semilattice of real numbers where the unary operations act
as translations. First we consider the simple F-semilattices which have a
least element.

10



Proposition 1.12. If F is a commutative group, then the simple F-semilat-
tices containing a least element are, up to isomorphism, exactly the subalge-
bras Spr of P(F).

Proof. Let S be a simple F-semilattice which contains a least element. We
have to prove that S is isomorphic to some subalgebra Sy, of P(F). By
Lemma 1.6, S is isomorphic to some subalgebra U of P(F). Moreover, we
know that U can be selected in such a way that it contains the empty set
and a unique element M with properties (1)—(3). In particular, the element
M is a submonoid of F. Our aim is to prove that M is not only a submonoid
of F but also a subgroup of F. Once this is done, we can use Lemma 1.5 to
show that M is actually an atom of U, and we can complete the proof using
the same argument as in the last paragraph of Lemma 1.9.

In order to prove that M is a subgroup of F, let us introduce the notation
M~ for the set of inverses of the elements in M. We define a homomorphism
¢ from U to P(F) as follows:

0: U — P(F); @(A)=M"1. A (1.12a)

This mapping is compatible with all unary operations, because

Now we have to show that
Mt (AnB)= (M1 -AnM - B).

The inclusion C is trivial. To prove the reverse inclusion, let us choose an
element from the right hand side. So there exist elements a € A, b € B,
m,n € M such that m™'-a = n~!' - b. Since F is commutative this is
equivalent to the equality n-a = m -b. But by Lemma 1.6 (2) we know
that A= M - A and B = M - B, hence both A and B contain the element
n-a =m-b. Therefore our original element m~! - a can be expressed in the
way of (m~!-n7!).(n-a) € M~ (AN B). So we have shown that ¢ is a
homomorphism from U to P(F).

Clearly, p(0) = 0 and (M) = M~*- M. Since M~! - M # (), the kernel
of the homomorphism ¢ cannot be the full relation. But U is simple, hence
o must be an embedding. Now let m be an arbitrary element of M. Since M
is a submonoid, we have M~1-M-m = M~'- M, that is, (M -m) = o(M).
However, ¢ is an embedding, hence M - m = M. This means that M is a
subgroup of F, so the proof is complete. O

From now on we will discuss simple F-semilattices that have no least
element. We will see that they can be embedded in a special algebra which
we define now.
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Definition 1.13. Let F be a fixed commutative group. Then for every
nonconstant homomorphism S from F to the additive group (R;+) of the
real numbers let us define an F-semilattice Rg = (R;min, F') on the set of
real numbers as follows:

(1) min(a,b) is taken with respect to the natural order of R, and
(2) f(a) =a—p(f) for all f € F and a,b € R.

As we will see later, not every subalgebra of this algebra is simple;
however the algebras Rg contain, up to isomorphism, all the simple F-
semilattices without least element.

Lemma 1.14. If F is a fired commutative group then every simple F-
semilattice without least element can be embedded in Rg for an appropriate
nonconstant homomorphism (3.

Proof. The first step of the proof is to represent the given simple F-semilat-
tice, according to Lemma 1.6, as a subalgebra of P(F"). So we have a simple
subalgebra U of P(F') without least element. Furthermore, U has an element
M, which is actually a submonoid of F', and in addition M has the properties
described in Lemma 1.6. We will see that in this situation M must have
M UM~ = F. This will lead us to the proof that the semilattice order of
U is linear, and that any two distinct element of U can be separated by a
shifted image f(M) = M- f~! of M. At this point we will choose a unit shift
e € I'. The number 0 € Rg will correspond to M, and the integers & € Rg
to M - e*. After this, we will extend this correspondence to the rational
numbers and then to the real numbers. Meanwhile the homomorphism (3
will also be discovered.

Now let us see the details.

Cramv 1. 0, F ¢ U.

Since U has no least element, U cannot contain the empty set. In order to
prove that F' & U, suppose the contrary. To this end let ¥ be the equivalence
relation on U which has only two blocks {F'} and U \ {F}. Clearly, 9 is
compatible with the unary operations as well as with intersection, so it is a
congruence relation. Since U has no least element, U must be infinite. So
the block U\ {F'} contains more than one element, and hence the congruence
relation ¥ is not trivial. But this contradicts the assumption that U is simple.

CrAM 2. The submonoid M of F is not a subgroup.

In the second last paragraph of Corollary 1.7 we have shown that if M
were a subgroup of F, then U would contain the empty set. But the empty
set would be a least element in U, and we know that U has none, therefore
M cannot be a subgroup of F.

Cramm 3. M 1. M=F.

12



We will use the homomorphism ¢ defined in equation (1.12a) (the proof
that ¢ is indeed a homomorphism works here, as well). Here the kernel of ¢
is not the equality relation. This is because of the fact that the submonoid
M is not a subgroup. To see this, choose an element m from M \ M. We
will examine the images of M and M - m~! under . Since m~' ¢ M and
m~t € M-m~', we have M # M -m~'. On the other hand, the images
under ¢ are (M) = M~'-M and o(M-m~') = M~'-M-m~1, respectively.
But the set M1 M is a subgroup of F, because F is commutative and M is
a submonoid. Therefore (M) = (M -m~1). This shows that ¢ cannot be
an embedding, hence it must be a constant homomorphism, since its domain
is the simple algebra U.

If fis an arbitrary element of F, the sets M and f(M) = M - f~!
are elements of U, so their images under ¢ are equal. This means that
M=t M =M1 M- f~! for every element f € F. Since M~' - M is a
subgroup of F, f~! € M~1.M for every element f € F, thatis, M~'.M = F.

Cramm 4. F=MuUML

Let us suppose the contrary. So, we can take an element r € F' such that
neither » nor r—! is in M. This will lead to a contradiction. First of all we
will define a sequence a; (i = 1,2,...) in M. Since M~' - M = F, we know
that for an arbitrary element f € F' there exist elements a,b € M such that
f =a"!-b. In other words, for every element f € F there exists an element
a € M such that f-a € M. We can apply this argument several times to
define the elements a; (i = 1,2,...) in such a way that

a1 € M with r-a; € M,
as € M with r2-a1-a2€M,
a; € M with 7°-a1-...-a; € M,

Furthermore, we require that the choice a; = id has to be made whenever
reai-...-a;_1 € M.
Now we define a homomorphism ¢: U — P(F') by setting

YA ={feF|f -(r'-ay-...-a;) € A for almost all natural numbers i }.

It is easy to see that this mapping is compatible with the unary operations
as well as with intersection. Now we show that this mapping is not injective;
namely, we have

(M) = (MM 7).

The sets M and M N M - r are distinct elements of U, because the first one
contains id, while the other one does not, since = & M.

In order to see that the images are equal, take an element f from ¢ (M).
This means that f - (r'-aj -...-a;) € M for almost all i. Therefore there
exists a natural number & such that this condition holds for every ¢ > k. If
f-(r*-ay-...-a;) € M, then let us multiply each side by - a;+1, and we get
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f-(r*tl.ay-.. .-a;-a;41) € M-a;;1-r. But we know that a;11 € M and M is a
submonoid, so we get M -a;+1 C M. Therefore f-(ri*t-ay-...-a;11) € M-7.
To sum it up, we know that f-(r-a;-...-a;) € M -r if i > k. But the
element f-(r'-aj-...-a;) is in M, hence it is in M N M -r, too. This proves
the inclusion (M) C »(M N M - r). The reverse inclusion is trivial, since
M N M -ris asubset of M.

So far we have proved that v is a homomorphism from U to P(F), and
it is not an embedding. Since the algebra U is simple, we conclude that
1 must be a constant mapping. The question is which element of P(F)
is assigned by 1 to the elements of U. Since 1 is a homomorphism, this
element must form a one element subalgebra of P(F'). But because of the
unary operations, there are only two such subalgebras of P(F), namely {0}
and {F'}. From the definition of ¢ we see that (M) contains id, hence we
conclude that ¢(M) = F.

In particular, the element r is in ¢)(M). This means that there exists a
natural number k such that r- (r*-ay-...-a;) € M for every i > k. But this
shows that we have chosen id when we defined the element a;;;. Therefore
we conclude that axy; = agyo = --- = id. Since (M) = F, the element
(a1 -ag- ... ap)"tis also in ¢»(M). This means that there exists a natural
number [ such that (a; -ag-...-ap)™'-(r'-a1-... - a;) € M for every
1 > 1. We can assume without loss of generality that [ > k. This shows that
M>(ar-ag-...-ap) - (r*-ar-...-a;)) =71 agry ... a; = r' for every
i>1.

Up to this point we have proved the following statement. If neither r nor
r~lisin M, then there exists a natural number [ such that ¢, 71 ... € M.
If we switch the role of r and 7~!, we get in the same way another natural
number j such that »—7,r=7~1 ... € M. Now choose a natural number i
greater than both k and I. Then 7! and r—* are elements of M, and since
M is a submonoid of F, we get r = 7T . =% € M. But this contradicts our
assumption that M contains neither » nor r—1.

CLAIM 5. Set inclusion yields a linear order on U. Furthermore if A and B
are two elements of U such that A B, then for any element a € A\ B we
have BC M -a C A.

Clearly, the second statement implies the first. In order to prove the sec-
ond statement, consider elements A, B € U and a € A\ B. From Lemma 1.6
we know that M - A = A, so M -a C A. Now suppose that the other in-
clusion does not hold, that is, there exists an element b € B\ M - a. Thus
b-a~! € B-a7'\ M. By Claim 4 we get that the element b-a~! must be
in M~',soa-b' € M. Thusa = (a-b"')-b€ M-B = B, and this is a
contradiction. So we conclude that B C M - a.

At this stage of the proof we can indicate how the homomorphism §: F —
(R;+) will be defined. We have the subset M of F' which divides F' into
two parts. Those elements of F' which lie in M will be mapped by 3 to
nonpositive real numbers; and those which lie in M1, to the nonnegative
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ones. The kernel of 3 will be the subgroup M N M~! of F. Now we take an
element e which will be mapped by 3 to the number 1. So let us choose and
fix an element e from M !\ M. This can be done, since M is not a subgroup
of F'. Since ( is to be a homomorphism, for any integer k the elements of
M - €* must correspond to real numbers not greater than k. This suggests
the conjecture that every element of ' will be an element of M - ¥ for some
integer k.

CLAIM 6. U M- =F.
keZ

We will define again a homomorphism 7 from U to P(F'). For any element
AeU let
n(A) = U A-ek.
k€EZ
It is easy to see that this mapping is compatible with the unary operations,
since F' is commutative. To prove that n is compatible with the intersection
as well, we have to show that

J@AnB)- e = (UAJ) m(UB.ek>.

keZ kEZ kEZ

The inclusion C is trivial. To prove the reverse inclusion, take an arbitrary
element from the right hand side. So there exist elements a € A,b € B
and integers k,l € Z such that a - ef = b-el. We can assume that k < I.
Since e € M~ we get that ¢*~! € M. From Lemma 1.6 we know that
A = M - A, hence the element a - e*~! belongs to A. But from the equality
a-eft.el =a-ekF =b-el we get a-eF~' = b e AN B, therefore the element
a-efl.el=b-eisin (ANB)-é€.

The homomorphism 7 cannot be injective, since n(M) = n(M - e) but
M # M -e(asee M-e\ M). But U is simple, therefore 7 is a constant
mapping. The same argument as before for 1 yields that 1 maps each element

of U to F. In particular, n(M) = F, which is what we wanted to prove.
CLAIM 7. For any integer k we have id € M - e* iff k > 0.

This claim is an immediate consequence of the facts that e € M~1\ M
and that M is a submonoid of F.

Now we can define the homomorphism 3: F — (R;+). For any element
a € F let

k
5(a):inf{le@’kEZ,leNandaleM-ek}. (1.14a)

CLAIM 8. The mapping (3 is a nonconstant homomorphism from F to (R;+).
Furthermore,

(1) B(e') =i for any integer i, and
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(2) B(m) <0 for every element m € M.

To see that ( is well defined, we have to check that for every element
a € F the set on the right hand side of equation (1.14a) is nonempty, and
has a lower bound. So let @ be an arbitrary element of F. By Claim 6
we get an integer k such that a € M - e*, therefore the set on the right
hand side of equation (1.14a) contains k. Again by Claim 6 we get another
integer i such that a=! € M - €’. Since M is closed under multiplication, we
get a=! € M - e for any natural number {. If for some integer k we have
at e M-eF thenid=al-a' € M-eF-M-e = M- e hence by Claim 7
the exponent k + il is nonnegative. This implies that k/l > —i, therefore the
integer —¢ is a lower bound for the rational numbers belonging to the set in
equation (1.14a).

Now we show that 3(e’) = i for any integer 4. It is clear that e’ € M - ¢,
hence from equation (1.14a) we get 3(e') < i/1 = i. Now suppose that
(e')l € M - ¥ for some integer k£ and natural number I. Thus id € M - eF=#,
and by Claim 7 we get k/l > i. This shows that (e) = i.

From the definition of 3 it is clear that f(m) < 0 for every element
m € M, since we can choose 0 for k£ and 1 for [.

Now we prove that 8(a=!) < —f3(a) for every element a € F. To this
end let € be an arbitrary small positive real number, and let us choose the
numbers k and [ such that 3(a) —e < k/l < B(a). From k/l < $(a) we know
that a! ¢ M -eF. Using the facts that M is a submonoid of the commutative
group F and that M UM~ = F, we get

adtgM-ef=d-eFg M
=ad.-eFem?
=al-fem
=aleM- e
= (aHeM-e "

But according to equation (1.14a) this means that 3(a~!) < —k/I. Since
we have chosen the numbers k and [ such that —k/l < —f(a) + &, we get
B(a=1) < —pB(a)+e. But this holds for every positive real number &, therefore
it must hold for zero, that is, B(a~!) < —f(a).

To prove that § is compatible with multiplication, let a,b € F and let ¢
be an arbitrary small positive real number. From the definition of § we get
two pairs k1,11 and ks, lo of integers such that [1,l3 > 0 and

ﬁ(a)ﬁ%ﬁﬁ(a)—ke where a' € M - €M, and
1
k
< =< +¢& where € et
ﬁb l2 66 h bl2 M k2
2

Since M is a submonoid, raising a’* € M - e to the loth power yields
a2 € M-efl2 . Similarly 612 € M -eh*2 and by multiplication we conclude
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that (a-b)l12 € M - efrlztlik2 By the definition of 3 this means that

kils +liks ki |k
Mb ik _E R g 4 B0) + 2.

b <
Bla-b) < Il T

But ¢ was again an arbitrary positive real number, hence it follows that
B(a-b) < B(a) + [(b). Finally, the inequalities below prove that B(a - b) =
B(a) + B(b) and B(a™t) = —B(a):

Bla-b) < B(a) + B(b)
= B(a) +B(a™" -a-b)
< p(a) + Bla” ) B(a-b)
< f(a) - B(a) + B(a- )
= B(a-b).

Now we can define an embedding {: U — Ry which will complete the
proof of the lemma. For any element A € U let

£(A) = sup{ B(a) |a € A}. (1.14b)

CraIM 9. The mapping £ is an embedding of U in Rg. Furthermore, (M
f) = B(f) for every element f € F.

To see that £ is well defined, we have to check that for every element
A € U the set on the right hand side of equation (1.14b) has an upper
bound. By Claim 1 we have A # (), and we can choose an element f € F'\ A
for every element A € U. Since f € M - f\ A, by Claim 5 we get A C M - f.
So we conclude that if £(M - f) exists, then £(A) also exists, by the definition
of &, and £(A) < (M - f).

Now we prove that (M - f) = B(f). From Claim 8 we know that [ is a
homomorphism, and 3(m) < 0 for every element m € M. Hence for every
element m - f of M - f we have

B(m- f) = pB(m)+B(f) <0+ B(f) = B(f).
Therefore {(M - f) < B(f). But f € M- f, s0 &M - f) > B(f), hence
E(M - f) = B(f)
In order to prove that £ is compatible with the semilattice operation, let

A, B be arbitrary elements in U. By Claim 5 we can assume that A C B.
But from this we get £(A) < ¢(B), and hence

§(AN B) = {(A) = min(£(A), £(B)).
Now we are going to show that £ is compatible with the unary operations
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as well. For arbitrary elements A € U and f € F we have

E(f(A) =¢&A-Fh
=sup{B(b) [be A- [}
=sup{B(a-f')]ac A}
=sup{B(a) + B(f ') |ac A}
=sup{fB(a) |a€ A} +5(f7)
= A +B(f7Y
=£(A) - B8(f)
= f(£(4)).

So we conclude that £ is a homomorphism from U to Rg. Since {(M -
eF) = B(e¥) = k for every integer k, ¢ cannot be a constant mapping. But
U is simple, hence ¢ is an embedding. O

The next example shows that for a homomorphism 3: F — R, a subal-
gebra S of Ry is not necessarily simple. This will help us to describe the
simple subalgebras of Rg.

Example 1.15. Let F be the additive group (Z;+) of the integers and
B: F — (R;+) be the identical embedding. Then the subalgebra S of Ry
with the underlying set

S:{geRMGZ}

18 not simple.

Proof. Clearly, the subset .S of R is closed under the operation of subtracting
any integer (i) =i (i € Z), that is, it is closed under the unary operations
of Rg. In addition, S is also closed under the binary operation of taking the
minimum. Therefore S is a subalgebra of Rg.

Now we construct a nontrivial congruence relation ¥ on S which will yield
that S is not simple. Let ¢ be the equivalence relation on S whose blocks
are the two-element sets {i,7 + 1/2}, where i € Z. Clearly, this relation is
compatible with the operations of S. O

Now we will show that if the image of 8 contains arbitrary small positive
real numbers, then every subalgebra of Rg is simple. Let us define this
property of 3 exactly.

Definition 1.16. A homomorphism 3: F — (R;+) is called dense if for each
real number £ > 0 there exists an element f € F such that 0 < 3(f) <e.

Lemma 1.17. If F is a commutative group and 3: F — (R;+) is a dense
homomorphism, then every subalgebra of Rg is simple.
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Proof. Let S be a subalgebra of Rg. We will prove that every pair of two
distinct real numbers z,y in S generates the full congruence of S. Clearly,
this ensures that S is simple. So let ¥ denote the congruence relation on S
generated by the pair (z,y). We may assume that x < y. Since [ is dense,
there exists an element e € F' such that 0 < (e) <y —=x. Let ¢ = 3(e) > 0,
and z = x + ¢. The number z is in S, because

z=x+e=a+0)=2-pF ) =ct(x)eS.
Since the pairs (z,y) and (z, z) are in ¥, we have
¥ 3 (min(z, z), min(y, z)) = (z,2) = (z,z +¢).

If we apply the unary operation e* € F to the pair (z,z + ¢) for some
integer k, we get

93 (e (z),e F(a+e))
= (@ —ple™?),z+e-pe™)
= (z+B(e"), v+ e+ B(e")
= (x + ke,x + ¢ + ke)
= (x + ke, + (k+ 1)e).

Since 9 is transitive, we conclude that (z+ke, z+le) € ¢ for any two integers
k.

Now we prove that every pair (r,s) € S x S belongs to ¥. Since € > 0,
we can choose two integers k,[ such that = + ke < r;s < x + le. Hence we
have

¥ 3 (min(z + ke, r), min(z + le, r)) = (x + ke, r), and
¥ 3 (min(x + ke, s), min(z + le, s)) = (x + ke, s).
Finally, the symmetry and the transitivity of ¥ yields (r,s) € 9. O

Let us examine the case when ( is not dense. It turns out that in this
case Rg contains, up to isomorphism, only one simple subalgebra, which has
the following structure.

Definition 1.18. Let F be a fixed commutative group. Then for every
surjective homomorphism « from F onto the additive group (Z;+) of the
integers let Z, = (Z;min, F) be the F-semilattice defined on the set of
integers as follows:

(1) min(a,b) is taken with respect to the natural order of Z, and
(2) f(a) =a—a(f) for all f € F and a,b € Z.
Lemma 1.19. If F is a commutative group and o: F — (Z;+) is a surjec-

tive homomorphism, then the F-semilattice Z, is simple.
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Proof. The proof is the same as that of Lemma 1.17, except that the role of
€ should be now played by 1. Since « is surjective, we can find an element
e € F such that a(e) =e¢ = 1. O

Lemma 1.20. If 5: F — (R;+) is a nonconstant and nondense homo-
morphism, then there exists a positive real number € such that the mapping
a: f— B(f)/e is a surjective homomorphism of ¥ onto (Z;+). Further-
more, every simple subalgebra of Rg is isomorphic to Z.

Proof. Since (3 is not constant, the real number

e=inf{B(f)| f € Fand 8(f) >0} (1.20a)

is well defined. The homomorphism ( is not dense, thus £ > 0.

Now we show that there exists an element e € F such that f(e) = e.
Since € > 0, by equation (1.20a) we can choose an element e € F' such that
e < fle) < 2. If B(e) # €, then we can again find an element f € F
such that e < 3(f) < B(e) < 2e. Hence 0 < fB(e) — B(f) < e. But fis a
homomorphism, therefore B(e - f~1) = B(f) — B(e). So we have found an
element e - f~1 € F such that 0 < (e - f~!) < ¢, which contradicts the
definition of . Therefore we conclude that ((e) = e.

Now we prove that 3(f)/e € Z for every element f € F. This will ensure
that o assigns integers to the elements of F'. Let f € F be an arbitrary
element. Since ¢ > 0, we can choose an integer k such that ke < B(f) <
(k+1)e. But B(e*) = kB(e) = ke, therefore 0 < B(f) — ke = B(a-e7 %) < e.
By the definition of ¢ we get 0 = B(f) — ke, that is, 5(f)/e € Z. Since
B(e¥) = ke for every integer k, we conclude that the mapping « of F into Z
is surjective. Finally, since ( is a homomorphism, « is also a homomorphism.

To complete the proof, it remains to be checked that if S is a simple
subalgebra of Rg, then it is isomorphic to Z,. To this end let us choose
an arbitrary element s € S. Now we define a mapping ¢ of S into Z,, and
subsequently we show that ¢ is a surjective homomorphism. For any number
a €S let

pla) = [(a—s)/e].

Clearly, this mapping is order preserving, and for any integer k we have

p(a— Be"))

= p(a — ke)

[(a — ke —s)/¢]
l(a—s)/e—k]
l(a—s)/e| — k.

p(e*(a))
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Thus ¢ is surjective. Since a(f) € Z for any unary operation f € F

= [(a=B(f) —s)/e]

= [(f(a) —s)/e]

= ¢(f(a))
Hence ¢ is a surjective homomorphism of S onto Z,. But S is simple,
therefore ¢ is an isomorphism. O

Now we can summarize the results in Proposition 1.12 and Lemmas 1.14
through 1.20 to give a characterization of all simple F-semilattices for a
commutative group F.

Theorem 1.21. If F is a commutative group, then every simple F-semi-
lattice is isomorphic to one of the following algebras:

(1) Sas, where M is a subgroup of F,
(2) Z,, where a: F — (Z;+) is a surjective group homomorphism, and

3) the subalgebras of Rg, where B: F — (R;+) is a dense group homo-
B
morphism.

Furthermore, these simple F-semilattices are pairwise nonisomorphic, except
for the case when (1,2 are dense homomorphisms, S1,So are subalgebras
of Rg,, Rg, respectively, and there exist real numbers t > 0 and d such that
B = tB1 and So = tS1 + d.

Proof. Let F be a fixed commutative group. First of all we know that the
F-semilattices listed in (1), (2) and (3) are simple (use Lemmas 1.9, 1.19 and
1.17, respectively). Our task is now to prove that each simple F-semilattice
S is isomorphic to one of these.

If S has a least element, then according to Proposition 1.12, S is isomor-
phic to some algebra listed in (1). Now suppose that S has no least element.
By Lemma 1.14 we can assume that S is a subalgebra of Rg for an appro-
priate nonconstant homomorphism : F — (R;+). If 3 is dense, then S is
one of the algebras listed in (3). If 3 is not dense, then by Lemma 1.20, S is
isomorphic to some algebra listed in (2). So we have proved the first part of
the theorem.

In the rest of the proof we will show that the given algebras in (1), (2)
and (3) are pairwise nonisomorphic, except for the special cases indicated
above. Since the algebras in (1) have a least element, while the algebras in (2)
and (3) have not, the algebras in (1) cannot be isomorphic to any algebra
in (2) or (3). Now we show that distinct algebras in (1) are nonisomorphic;
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that is, if M; and My are distinct subgroups of F, then Sz, 2 Spz,. We can
assume that My Z Mj, so we can choose an element f € M; \ My. We recall
that if two algebras are isomorphic then the same identities hold in them.
The identity x A f(z) = 2 holds in Sy, since § N f(@) = 0, and for each
element M - a € Sy, we have

Ml-aﬂf(Ml-a):Ml-aﬁMl-a-f_l
=M,-anM;-ft-a
=M -anbM-a
= M - a.

On the other hand, the identity = A f(x) = = does not hold in Syy,, since
My # My - f~V and Mo N f(Ms) = My N My - f~1 = (). Hence we conclude
that Sps, and Sy, are nonisomorphic.

Let Z, be an arbitrary algebra from (2). Then for any two integers
a,b € Z, there are only finitely many elements in Z, that are between a and
b with respect to the natural order induced by the meet operation. However,
if S is a subalgebra of Rg, that is, if S is an algebra from (3), then for any
two different real numbers a,b € Rg there are infinitely many elements in Rg
that are between a and b, because 3 is dense. This implies that the algebras
in (2) are not isomorphic to any algebra in (3).

Now we will show that if a; and «g are distinct surjective homomor-
phisms of F onto (Z;+), then Z,, % Z,,. Since a; # a2, we can choose an
element f € F such that a;(f) # aa(f). If either ay(f) or ao(f) is zero,
then we can assume that a1(f) = 0 # aa(f), and we will examine the iden-
tity f(x) = x. If a1(f) and az(f) have opposite signs, then we can assume
that a1(f) < 0 < aa(f), and we examine the identity x A f(z) = x. It is
easy to check that in these cases the identities hold in Z,, but they fail in
Z,,, thus Z,, #* Z,,. For example the identity x A f(z) = z holds in Z,,,
because a1 (f) < 0 and f(x) =z — ai1(f) > =.

Now let us examine the case when a1 (f) and as(f) have the same sign.
We can assume that |ai(f)| > |a2(f)| > 0. Since «; is surjective, we can
choose an element e € F such that aj(e) = 1. We know that a;(f) is an
integer, so let g = f - e~1(f) ¢ F. Hence we have

and similarly



It is easy to see that aa(g) # 0, since |a1(f)] > |aa(f)] > 0 and az(e) is an
integer. So we have found again an element g € F such that a;(g) = 0 #
as2(g). Hence the identity g(z) = x holds in Z,, but fails in Z,,. Thus we
conclude that the algebras listed in (2) are pairwise nonisomorphic.

In order to complete the proof, we have to show that the only possibil-
ity for two algebras from (3) to be isomorphic is the case indicated in the
statement of the theorem. Let (31, B2 be dense homomorphisms from F to
(R;4), and Si, Sy be subalgebras of Rg,, Rg,, respectively. If £ > 0 and d
are real numbers such that 8y = ¢81 and Sy = tS7 + d, then let us define an
isomorphism 7: Rg, — Rg, by

T(z) = tx + d.

This mapping is indeed an isomorphism, since it is bijective, it preserves the
natural order, and for any unary operation f € F and real number =z we
have

f(r(x)) = 7(x) — B2(f)
=tr+d—t61(f)
=tz — pi(f)) +d
=t-f(x)+d
=7(f(2)).
Now it is easy to see that the restriction of 7 to S; is an isomorphism between
Sl and SQ.

Conversely, let ¢: S; — So be an isomorphism. Since 1 is dense, we
can choose an element f € F such that 51(f) > 0. If B2(f) < 0, then in
So we have f(z) = x — [a2(f) > =, thus the identity = A f(x) = = holds
in So. However, this identity does not hold in Si, since in S; we have

f(x) = x — B1(x) < x. This contradicts our assumption S; = So, hence we
conclude that B2(f) > 0. Put

,_ B

Bi(f)’

thus t > 0. If B2 # tf;1 then we have an element g € F such that [a2(g) #
tP2(g). Suppose (2(g) < tB1(g). Since [a(f) > 0, we can choose integers
p,q € Z such that ¢ > 0 and

Balg) < gﬁm < tB1(g)-

Multiplying by ¢ > 0 and using G2(f) = t51(f), we get

aB2(9) < pBa(f) = tpbi(f) < tgbi(g)-

Since (31, B2 are homomorphisms and ¢ > 0, we get
Ba(g?) < B2(f7) and  Bi(f*) < Pilg?).
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This implies that the identity fP(z) A g¢(x) = fP(z) holds in Sg, but fails in
S;. It is not hard to see that this method works also for the other case when
B2(g) > tB1(g). Thus we get a contradiction, which shows that Gy = t/3;.

Now let us choose an arbitrary real number s; € S1, and put so = ¢(s1) €
S9 and d = s9 — tsy. Furthermore, let

Qi={f(s))| feF}y={si—06i(f)| feF} fori=1,2.

Clearly @; C S; for ¢ = 1,2, and since (3; is a dense homomorphism, Q;
is a dense subset of R, and hence of S;, too. Now we will show that the
isomorphisms 7: Rg, — Rpg, and ¢ coincide on the set ); € R. For each
element f(s1) € Q1 we have «(f(s1)) = f(e(s1)) = f(s2) and 7(f(s1)) =
f(r(s1)) = f(ts1 +d) = f(s2). Thus 7 yields a bijection between () and
Q2.

Since both 7 and ¢ preserve the natural order of the real numbers, and
they coincide on @1, and the sets @1, Q2 are dense in S7,S2, respectively,
the isomorphisms 7 and ¢ coincide on the whole set S;. Thus 7(S7) = 52,
that is, tS1 +d = Ss. O

Up to this point we have seen two types of simple F-semilattices. The
first type consists of the algebras Sjp;, while the other type contains the
algebras Z, and Rg. The simple F-semilattices of the first type have a least
element and some atoms, while the algebras of the second type are linear.
It is possible to construct an example of a simple F-semilattice which has
a least element but no atoms and its semilattice order is not linear. From
Corollary 1.11 we know that the group F cannot be locally finite in this
example. By Lemma 1.14 we also know that F cannot be commutative.
Therefore it is natural to let F to be an appropriate infinite subgroup of the
symmetric group SymZ of the set of integers. We refer the reader to [19]
where the construction of this example is carried out in detail.
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2 The undecidability of a partial near-unanimity
term

The near-unanimity problem is to decide of a finite algebra if it has a near-
unanimity term. In an attempt to prove the undecidability of this problem
the following approach was taken by R. McKenzie.

Definition 2.1. Let A be a fixed finite algebra, ¢(z1,...,z,) be a term
of A, and S be a subset of A. We say that t is a partial near-unanimity term
on S if

ty,z,...,z) =tz,y,z,....,x) = =tx,...,z,y) ==z
for all z,y € S.

Clearly, a term ¢ of A is a near-unanimity term if and only if it is a
partial near-unanimity term on A, but more interestingly, if and only if ¢
is a partial near-unanimity term of the two-generated free algebra in the
variety generated by A on the set {z,y} of generators. Thus it is natural to
study the decidability of the partial near-unanimity problem on some fixed
subset of a finite algebra. It is proved in |23] that the existence of a partial
near-unanimity term on a fixed two-element subset is undecidable. We will
extend this result to a subset excluding two fixed elements, which is our main
result in this chapter.

Theorem 2.2. There exists no algorithm that can decide of a finite algebra
A and two fized elements r,w € A if A has a partial near-unanimity term

on the set A\ {r,w}.

Following the proof of R. McKenzie, our work is based on the undecid-
ability of the halting problem for Minsky machines. The Minsky machine
was invented by M. Minsky in 1961 (see [25, 26]), but he writes that the
concept was inspired by some ideas of M. O. Rabin and D. Scott [28]. The
“hardware” of a Minsky machine M consists of two registers A and B, which
can contain arbitrary natural numbers. The “software” is a finite set S of
states together with a list of commands. There are two special states: the
initial state q1 € S, and the halting state gy € S. The machine starts in the
initial state, stops at the halting state, and at any given time it is in one of
the states. For each state i € S\ {qo} there is a unique command which is
either of the form

e j:inc R,j or

e i:dec R,j,k
where R € {A, B} and j,k € S. The first command instructs the machine
to increase the value stored in register R by one, and then to go to state j.
The second command first checks the value stored in register R; if it is zero,
then the machine goes to state j; otherwise the value stored in register R

is decremented by one and the machine goes to state k. Now we give the
formal definition.
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Definition 2.3. A Minsky machine M = (S, qo,q1, M) is a finite set S of
states with two distinguished elements qg, g1 € S together with a mapping

M: S\ {q} — {(R,j),(R,j,k) | Re {A,B} and j,k € S }.

We call gg the halting state, and q; the initial state. The symbols A and B
represent the registers.

The mapping M describes the commands of M in the following way. For
any given state i € S\ {qo} the tuple M(7) is either of the form (R, ) or
(R, j, k), which correspond to the two types of commands described earlier.

Definition 2.4. A configuration (i,a,b) of M is an element of S x N x N,
which specifies the current state and the values of the registers. We call
(i,a,b) an initial configuration (halting configuration) if i = q; (or i = qo,
respectively).

For any configuration the Minsky machine M uniquely determines (com-
putes) the next configuration. By iteration, starting from the initial configu-
ration with zero registers, we obtain a sequence of configurations, which will
be called the computation of M.

Definition 2.5. The processor for M is a partial mapping of the set of
configurations into itself denoted by M and defined as

undefined  if i = qq,

(Jya+1,b) if M(i) = (4, J),

(7,0,b) if M(i) =(A,j,k) and a =0,
M((iya,b)) = < (k,a —1,b) if M (i) = (A, j, k) and a > 0,

(j,a,b+1) if M(i) = (B,j),

(4,a,0) if M(i) = (B,j,k) and b =0,

((k,a,b—1) if M(i) = (B,j,k) and b > 0.

We will use iterative applications of the processor M and adopt the
power notation defined as M%((i,a,b)) = (i,a,b) and M"*((i,a,b)) =
M(M™({(i,a,b))). We consider M"({i, a, b)) to be undefined if M™((i,a, b))
is a halting configuration for some m < n.

Definition 2.6. We say that M halts if it halts on the (0,0) input, that is,
if M™((¢1,0,0)) is a halting configuration for some n > 0.

It is proved in [25] that Minsky machines are equivalent to Turing ma-
chines in the following sense. Given a Minsky machine M (or Turing machine
T), we can algorithmically construct a Turing machine 7 (M) (or Minsky
machine M (7)) which halts if and only if the original machine halts. This
means that the halting problem for Minsky machines is as difficult as for Tur-
ing machines; that is, undecidable. Thus a new path opens for proving the
undecidability of algebraic problems by interpreting Minsky machines. For
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example this route was taken in [16] to prove the undecidability of various
kinds of word problems.

In the rest of this chapter we are going to prove Theorem 2.2 in the
following way. For any Minsky machine M we define an algebra A (M) with
two special elements r,w € A(M) such that A(M) will have a partial near-
unanimity term on A(M) \ {r,w} if and only if M halts. This is clearly
enough since the halting problem for Minsky machines is undecidable.

By maj(z,y, z) we denote the majority element of {z, y, z} if it exists, i.e.,
when |{z,y,z}| < 2. We advise the reader to skim through this definition
and return to it when reading the subsequent proofs.

Definition 2.7. Let C' = {0, A, B,1}. We define the algebra A(M) on the
set AIM) =S x CU{p,r,w} with the following operations

w if x € {r,w},
I(z) = { {q1,0) ifz=p,
r ifx eSS xC,
(w if we {y,z,u}t orre{y,zu},
maj(y, z,u) else if maj(y, z,u) # p,
M(x,y,z,u) =< p else if maj(y, z,u) = p and
z € {q} x CU{r},
w otherwise;

for each command ¢ : inc R, j of M the operation

<j,C> if z = <i,C> and y = p,

Fi(.y) (j,Ry ifzx=(i,0)andye SxC,

i\T, =
Y ifz=rand y =p,

r
w otherwise;

and for each command i : dec R, j, k of M the operations

(k,c) ifx=(i,c) and y =p,
k1) ife={,R)andye S xC,
Gi(z,y) = 1) . %K)

r ifz=rand y =p,

w otherwise;

(jyc) ifx=(i,c) and c # R,

Hi(z)=<(r ifx=r,

Lw otherwise.

We will investigate this algebra in detail. The first important property
of A(M) is that it almost has an absorbing element.
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Definition 2.8. Let A be a set, and f: A™ — A. An element w € A is
absorbing for f if f(a) = w whenever a € A™ and w € {ay,...,a,}.

Proposition 2.9. The element w of A(M) is absorbing for the operations
I, Fi, Gz and Hl

Proof. One only has to check the definition of A(M). In the definition of I
this is stated explicitly. In the definition of Fj, G; and H; only the ‘otherwise’
case can be applied. O

Note that w is not an absorbing element for the operation M, but almost,
except in the first variable. Combining this with the previous proposition
one can see that A(M) cannot have a partial near-unanimity term on a
nontrivial subset that includes w. For example plugging in w in the right-
most variable of a term always yields w. We will use the element w to indicate
some irregularity of a term when plugging in near-unanimous evaluations.

Definition 2.10. Let Z = (x1,x2,...) be a fixed set of variables, and p be
the constant p evaluation. For each element e € A(M) let pl|,,—. be the
evaluation z,, = e and x,,, = p if m # n. We say that a term ¢(Z) is regular
if t(p) # w and t(p|z,=e) # w for each n € Nand e € S x C.

We ask the reader to check that the terms x1, I(z1) and Fy, (I(z1),x2)
are regular, while the terms I(I(z1)), Fg, (x1,22) and M(x1,z2, 23, 24) are
not.

Definition 2.11. We define slim terms inductively. The term I(z,,) is slim
for every variable x,. If ¢ is slim, then so are F;(t,y), Gi(t,y) and H;(t) for
any state ¢ € S and variable y € Z.

Proposition 2.12. Every reqular term t that does not contain the operation
M 1is either slim or a variable. Moreover, if t is regular and slim then there
exists an evaluation ply, —c for some x, and e € S xC, such that t(p|y, =) =
r.

Proof. We use induction on the complexity of ¢. If ¢ is a variable then the
statement is void, because variables are not slim by definition.

Suppose that ¢(z) = I(t1(z)). Because of Proposition 2.9 we know that
t; must be regular, as well. If ¢; is not a variable, then according to our as-
sumption we have an evaluation p|,, —. such that t1(p|s,—c) = r. This shows
that t(p|y,—e) = w, which is a contradiction. Thus t; must be a variable,
in which case the statement and the existence of the required evaluation are
satisfied.

Now suppose that t(z) = F;(t1(Z),t2(x)) for some i € S. Again, both
t; and to must be regular. If ¢; is a variable then ¢(p) = F;(p,t2(p)) = w.
Thus ¢1 cannot be a variable. So there exists an evaluation p|,,—. such that
t1(P|s,—=e) = 7, which forces t2(p|s, =) = p. But p is not in the range of any
of the operations I, F;, G; and H;; thus to must be a variable. In this case
the statement is clear.
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The same argument works if the topmost operation of ¢ is either G; or
H;. O

Regular slim terms play a very important role in the proof; they essen-
tially encode the computation of the Minsky machine M. To see how this
works, we describe the construction of a partial near-unanimity term from a
halting computation.

Lemma 2.13. If M halts, then there exists a partial near-unanimity term

on AM)\ {r,w}.

Proof. We use the processor M™ from Definition 2.5. Assume that M halts
in n steps, that is, M"({q1,0,0)) = {(go, —, —). For each natural number
m < n we define i,,, a,, and b,, by

M™((q1,0,0)) = (im, Qm, bm)-

We are going to build a slim term of depth n+1 by induction. Put tg = I(z).
Now suppose that t,, is already defined. At step m the machine is in state
im. There is a unique command for each state.

If the command for state 4, is of the form ¢ : inc R, j, then put ¢,,11 =
F;, (tm,ym) where y,, is a new variable. Now assume that the command
for state i,, is of the form ¢ : dec R, j, k where R = A. If a,, = 0 then put
tm+1 = Hi,, (tm). If ap, # 0 then let m’ < m be the largest natural number
such that a,y < am,, and put t,+1 = Gi,, (tm, Ym/). The case when R = B
is handled similarly using b,, and b,/ instead of a,, and a,, .

Finally, put t = M (tp, 21, 22, 23) where z1, z2 and z3 are new variables.
We claim that ¢, is a regular slim term and ¢ is a partial near-unanimity

term on A(M) \ {r,w}.
CraiM 1. The term t, is slim.

This follows from the construction. We have used only variables in the
second coordinates of F; and G;.

CLAIM 2. No wvariable of t has more than two occurrences. If a variable has
exactly two occurrences, then it is y,, for some m and the two occurrences
are at tyyy1 = Fy (b Y) and tiny1 = Gy, (ty, Yoo ) If a variable y,, has
exactly one occurrence then it is at tyy1 = Fi, (tm, Ym)-

The variables x, z1, 20 and z3 have single occurrences. At each F; we
always introduced a new variable. Now consider the case when ¢, =
Gi,, (tm,Ym). From the definition we know that a,y < a, and a, <
/41y - -+, 0m (assuming that R = A). Since a,y < @ < Gy and the
machine cannot increase a register by more than one, a, +1 = am = Gp/41.
This implies that the command for state i, is of the form ¢ : inc R, j and
R = A. On the other hand, the command for state i,, is of the form
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i :dec A, 4,k and a,, # 0, therefore ami1 = am — 1. To summarize, for
each pair (m/,m)

Om' +1=ap11 =am = am+1 + 1, and
am < /41,5 A
Note that this condition is symmetric. If m’ is in pair with some m then m

is the least natural number such that m’ < m and a7 11 > 1. Therefore,
Y has at most two occurrences.

CLAIM 3. t(P) = (im,0) for allm <n

We prove by induction on m. For m = 0 this is true by definition:
I(p) = (q1,0). Now we prove it for m+1. By definition t,,11 is Fj,, (tm, Ym),
H;, (tm) or Gi, (tm,Ym). Therefore tp,+1(p) is Fi,, ((im,0),p), Hi,, ({im,0))
or Gi,, ((im,0),p). Looking up the definition of these operations we conclude
that tm+1(ﬁ) = <im+1, 0>.

CLAIM 4. t1(Pla=e) =7 for allm <n and e € S x C.
This is clear, using induction.

CrLAIM 5. Let h <n and e € S x C be fized and assume that yy, has exactly
one occurrence in t,. Let R be the register manipulated in the command for
state i,. Then

(im,0)  f0<m<h,
(im,R) if h<m <mn.

tm(myh:e) = {

Without loss of generality we can assume that R = A. By Claim 2, the
single occurrence of yp, is at tp41 = Fj, (th,yn). Therefore, if m < h then
tm (Dly,=e) = tm(P) = (im,0). We use induction on m to prove the other
case. For the base of the induction we have tj,41(ply,=e) = Fi, ({in,0),€e) =
(ih+1, A).

Now consider the induction step from m to m 4+ 1. Assume that t,,11 =
F;, (tm,ym). Since yp has a single occurrence, y, # Ym, and therefore
tmt1(Plyp=e) = Fi,, ((im, A), D) = (im41,A4). A similar argument works when
tm-i—l = Gim (tmv ym’)-

Now assume that t,,+1 = H;  (t;,). From the proof of Claim 2 we can
see that ap < apy1,...,an. Therefore, a,, # 0. By the definition of t,,11
we know that either a,, or b, must be zero. Thus it is register B which is
manipulated in the command for state i,,. This implies that t,,11(D|y, =) =
Hy,, (i A)) = (i 41, A).

CLAIM 6. Let h < n and e € S x C be fixed and assume that yp has
exactly two occurrences in t, as described in Claim 2. Let R be the register
manipulated in the commands for states ip and ip,. Then
(im,0) f0<m<hH,
tm(ﬁ’yh/ze) = <Zm7 R) 'Lf h <m < h?
(im, 1)y if h<m<n.
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Without loss of generality we can assume that R = A. The same ar-
gument works for the first two cases as in the previous claim, but using b’
instead of h.

We prove the third case by induction on m. For the base of the induc-
tion we have tpy1 = Gy, (th, ynr). Hence tpy1(ply,,=e) = Giy, ((in, A),e) =
(ih+1,1). The induction step is now easy as there are no other occurrences
of yp along the term t¢,. Therefore, we always calculate Fj ({im,1),p),
G, ({im,1),p), or H;_ ((im,1)), which all yield (i, 41, 1).

CLAIM 7. The term t, is reqular. Moreover, t,(plu=c) € {qo} x CU{r} for
all variables u and all e € A(M) \ {r,w}.

Take any element e € S x C. By Claims 3 and 4 we have t,(p) =
(qo,0) and t,,(p|r=e) = r, respectively. Now take a variable y;,. If y;, has no
occurrence in t, then t,(ply,=e) = tn(p) = (go,0). Otherwise yp, has one or
two occurrences by Claim 2. Then by Claims 5 and 6 we have ¢, (p|y—c) €

{ao} x C.
CLAIM 8. t is a partial near-unanimity term on A(M)\ {r,w}.

Take a near-unanimous evaluation a on A(M) \ {r,w}. If the majority
element is not p, then t(a) = M (tn(a), 21, 22, 23) = maj(z1, 22,23). If the
majority element is p then t,(a) € {go} x C U {r} by Claim 7, and hence
t(a) = p. Therefore, ¢ is a partial near-unanimity term on A(M)\ {r,w}. O

We have seen how to encode the halting computation into the regular
slim term ¢,,. Our goal now is the reverse; to show that the computation of
M can be recovered from a regular slim term.

Lemma 2.14. Let t, be a regular slim term of depth n+ 1. Then t,(p) =
(in,0) where i, is the state of the machine M after the first n steps.

Proof. We want to show that the term ¢, behaves the same way as the one
in the proof of the previous lemma. Denote by ¢, the unique subterm of
t, of depth m + 1. That is, tg = I(—), and ty,41 i Fi(tm, —), Gi(tm,—) or
H;(t,,) for some i € S. Since t, is regular and the element w is absorbing,
tm(Plu=e) # w for all m < n, e € S x C and all variables u of t,.

CLAIM 1. t,,(p) € S x {0} for all m < n.
This is clear, using induction.

CLAIM 2. Let x be the variable used in ty. Then x has no other occurrence
in ty. Moreover, ty,(plz=c) =1 for allm <n ande € S x C.

We use induction on m. For m = 0 we have to(plg=c) = I(e) = 7.
For the induction step from m to m + 1 assume that ¢,,(p|s—=c) = . Thus
tm+1(P|z=e) 18 Fi(r,y), Gi(r,y) or H;(r) for some i € S and some variable y.
We know that this value is not w. Looking up the definition of F;, G; and
H;, we can see that the only choice is when the result is r (and y = p for F;
and G;). This completes the induction step and proves that x # y when the
operation is F; or Gj.
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CLAIM 3. Assume that a variable y # x has exactly one occurrence in ty.
Then the occurrence is at tpm+1 = Fi(tm,y) for some m < n and i € S.
Moreover, there exists no h > m such that ty+1 = H;(ty) and the command
for j manipulates the same register as the one for i.

Let m be the least natural number such that ¢,,41 has an occurrence of y.
Then ty41 = Fi(tm,y) or tm+1 = Gi(tm,y) for some i € S. Take e € S x C,
and consider t,,41(ply=e). By Claim 1, ¢p,(ply=e) € S x {0}. Checking
the definition of G; we see that G;(tm(p|ly=c),e) = w, a contradiction. So
tmt1 = Fi(tm,y). Moreover, ty41(ply=e) € S x {R} where R is the register
manipulated by the command for i. Now we show that ¢;(p|y=) € S x {R}
for all h > m by induction. For m—+1 we already have this. For the induction
step consider a = tj,41(ply=c). By definition a is F}({—, R), p), G;({(—, R), p)
or Hj({—, R)) for some j € S and a # w. In the first two cases this shows
that a € S x {R}. On the other hand, when a = H;({—, R)) # w then the
command for state j cannot manipulate the register R. This concludes the
proof of this claim.

CrLAaM 4. Assume that a variable y # x has at least two occurrences in ty,.
Then there exist m’ < m such that t,y41 = Fi(tm,y), tmi1 = Gj(tm,y) for
some i,j € S, the commands for i and j manipulate the same register R,
and y has no other occurrences than these two. Moreover, there exists no
m’ < h < m such that tp11 = Hy(ty) and the command for k manipulates
the register R.

Let m’ and m be the least natural numbers such that ¢,,,,1 has exactly
one and t,,+1 has exactly two occurrences of y. The term t,, has exactly one
occurrence of y, so we can apply the previous claim. This proves half of the
claim. It remains to be shown that ¢,,11 = G;j(tm,y) for some j € S, that
the command for j manipulates the register R, and that there are no other
occurrences of y.

Fix e € S x C'. From the proof of the previous claim we know that
tm(Ply=e) € S x {R} where R is the register manipulated by the command
for i. Consider a = tp41(Ply=c). This element is either F;((—, R),e) or
G((—, R),e) for some j. Since a # w, we must have ty,41 = Gj(tm,y), and
the command for j must manipulate R. Therefore, t,,41(ply=c) € S x {1}.

Finally, we show that t,(p|y—e) € S x {1} for all h > m by induction. We
have already the basis of the induction. To show the induction step, consider
tha1. If tpq = Hy(tp) for some k then we get t,41(ply=c) € S x {1} by the
definition of Hy. Now assume that ¢,1 = Fj(tp,2). Since tpi1(ply=e) # w
we must have z # y and tp41(ply=e) € S x {1}. The same argument works
for Gy, as well.

CLAIM 5. Let iy, @ and by, be defined by M™({q1,0,0)) = (im, am,bm)-
Then the following hold for all 0 < m < n.

(1) If the command of M for i, is of the form i : inc R, j, then ty,11 =
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(2) If the command for iy, is of the form i : dec R, j, k, and if a,, # 0 for
R = A while b, # 0 for R = B, then ty,+1 = Gi,, (tm, —)-

(3) If the command for iy, is of the form i : dec R, j, k, and if a,, = 0 for
R = A while by, =0 for R = B, then t,11 = H;,, (tm, —)-

Moreover, ty,(p) = (im,0) for all0 < m < n.

We prove this by induction on m. For m = 0 we have ty(p) = I(p) =
(q1,0) = (ip,0). For the induction step assume that (1)—(3) hold for all
m’ < m, a condition which is void if m = 0, and ¢,,(p) = (im,0). We have
to show that (1)—(3) hold for m and t,,+1(p) = (im+1,0).

Assume that t,,+1 = Fj(tm,y) for some i € S and some variable y. We
have to show that i = iy, and ¢, +1(p) = (im+1,0). Since the operation
F; is defined, the command for state ¢ is ¢ : inc R, j for some R € {4, B}
and j € S. From the induction hypothesis, ¢,,(p) = (im,0). Consider the
element e = t,,11(p) = F;({im,0),p). Since e # w, we must have i = i,, and
e = (J,0). As i,, =i and the command is 7 : inc R, j, we have i,,41 = j. So,
tm+1(ﬁ) = <im+1a0>-

Assume that ¢, 11 = G;(tm,y) for some i € S and variable y. We have
to show that i = i), and ¢, +1(p) = (im+1,0). Since the operation G; is
defined, the command for state i is ¢ : dec R, j, k for some R € {A, B} and
j,k € S. Without loss of generality we can assume that R = A. Consider
e = tmt+1(P) = Gi({im,0),p). Since e # w, we must have i = i, and
e = (k,0). What remains to be shown is that i,,11 = k. We know that i,,+1
is either j or k depending on whether a,, = 0 or a,, # 0. We claim that
am # 0. By the definition of the Minsky machine,

am = |{ h < m: M has increased register A at step h }|
— [{ h < m: M has decreased register A at step h }|.

Now using the induction hypothesis we get that a,, = |S*| — |S~| where

ST = {h <m:tpy1 = Fih(tha —) and
the command for i, manipulates register A}, and
ST ={h<m:thy =G, (tn,—) and

the command for i, manipulates register A }.

Take a number h from the second set S™, so tp41 = Gy, (I, 2) for some
variable z, and the command for i;, manipulates register A. By Claim 2, 3
and 4, the variable z has exactly two occurrences; the other being at ¢,11 =
F;,,(t},, z) for some h' < h. Moreover, the command for i, manipulates the
same register A. Thus A’ belongs to the first set ST. This only shows that
am > 0. But the same argument works for t,,+1 = G;(tm,y), showing that
there exists an m’ < m which belongs to S*, while m ¢ S~. Therefore,
am > 0 and iy = k.

Finally, assume that t,,41 = H;(t,,) for some i € S. We have to show
that i = 4y, and tm4+1(P) = (im+1,0). Since the operation H; is defined,
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the command for state ¢ is ¢ : dec R, j, k for some R € {A, B} and j, k €
S. Without loss of generality we can assume that R = A. Consider e =
tm+1(P) = H;i({im,0)). Since e # w, we must have i = i,, and e = (j,0).
What remains to be shown is that ¢,,41 = j. We know that 4,,41 is either
j or k depending on whether a,, = 0 or a,, # 0. To get a contradiction,
suppose that a,, # 0, i.e., the set ST, defined in the previous subsection, has
more elements than S™. We know that each element of ST is in pair with a
unique element of ST. So there exists an h < m such that t; 1 = Fj(t, 2) for
some variable z, the command for ¢+ manipulates register A, and h is not in
S~. Therefore, z has exactly one occurrence in t,,. If z has two occurrences
then the other one must appear after ¢,,11. In any case, either by Claim 3 or
4, the command for i at t,,+1 = H;(t,,) cannot manipulate register A. But
according to our assumption it does, which is a contradiction. This shows
that a,, = 0, therefore i,,41 = j.

This finishes the proof of the last claim, which includes the statement
tn(p) = (in,0) of the lemma. O

The previous two lemmas give the connection between regular slim terms
and halting computations. What remains to be shown is that a regular
slim term can be found as a subterm of a partial near-unanimity term on
A(M)\{r,w}, or at least as a subterm of a “minimal” partial near-unanimity
term.

Definition 2.15. Two terms ¢ and ty are p-equivalent iff t1(p) = t2(p) and
t1(Plzn=e) = t2(P|z,=e) for each n € Nand e € S x C. A term is p-minimal
iff there is no p-equivalent term of smaller complexity.

Lemma 2.16. Let t be a regular p-minimal term which contains the opera-
tion M. Then A(M) halts.

Proof. We use induction on the complexity of ¢t. If ¢ = Fj(t1,t2) then both
t1 and t2 must be regular (and p-minimal) by Proposition 2.9. So at least
one of them contains the operation M and by induction we are done. The
same argument works for the operations G;, H; and I, as well.

Now suppose that t = M (t1,to,t3,t4). If to, t3 or t4 is not regular then we
have some near p-unanimous evaluation f such that w € {ta(f), t3(f),ta(f)}.
This forces ¢(f) = w, which is a contradiction. So to, t3 and t, are regular.
If one of them contains the operation M, then we use induction on that sub-
term. So assume that M does not occur in to, t3 and t4. By Proposition 2.12,
each of them is either a slim term or a variable. If ¢ is slim (k € {2,3,4}),
then we have an evaluation p|,, —. such that tx(p|s,—e) = r. This forces a
contradiction ¢(p|z, =) = w. Thus t9, t3 and ¢4 must be variables. If two of
them are the same variable y then it is not hard to check that ¢ is p-equivalent
to y, a contradiction to the p-minimality. Thus the terms to, t3 and ¢4 are
distinct variables. If ¢; is not regular then we have an evaluation p|;, —. such
that ¢1(p|s,—e) = w. But this forces ¢(p|,,—e) = w, a contradiction. So t;
must be regular. If ¢; contains M then we use the induction. If ¢; does not
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contain M then by Proposition 2.12 it is either a slim term or a variable. It
cannot be a variable because ¢(p) # w. So t; is regular and slim term. Now
by Lemma 2.14 the value ¢;(p) contains the last state of the correct piece
of the computation. But ¢(p) # w, which proves that we have reached the
halting state. O

Theorem 2.17. Let M be a Minsky machine. The algebra A(M) has a
partial near-unanimity term on the set A(M) \ {r,w} iff M halts.

Proof. Suppose that ¢ is a partial near-unanimity term on A(M) \ {r,w}.
Then t is regular. Let ¢’ be a term p-equivalent to ¢ and p-minimal. Then
t' is not a variable; moreover, t'(p) = p implies that the topmost operation
of t' is M. Now by Lemma 2.16, M halts. The other direction is proved in
Lemma 2.13. 0

This finishes the proof of Theorem 2.2, as it is undecidable of a Minsky
machine if it halts.
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3 The decidability of a near-unanimity term

Let w and w™ be the set of all finite and countable cardinals, respectively.
For a nonempty set A we denote by O4 the set of all operations on A. In
general we do not assume that the underlying set A is finite. For F C Oy4y
and n € w put F = F N A4", which is the set of all n-ary operations
contained in F. Binary operations will play a crucial role in our arguments,
therefore we put By = (91(42). The clone generated by a set F C O4 will be
denoted by (F). All indices in this chapter start from zero.
(n)

An operation f € O, is a near-unanimity operation if

f(y,l',---,l'):f(l',y,fp,-u,«r):"‘:f(l',---,l',y):x

for all z,y € A. It is customary to assume that n > 3, but we will not make
this restriction to avoid considering special cases in some of our arguments.
However, this does not weaken our results, because no operation of arity
less than three can satisfy this definition whenever the underlying set has at
least two elements. The problem of deciding whether a finite algebra has a
near-unanimity term operation is called the near-unanimity problem.

Instead of working with operations and their composition, we introduce
an equivalence relation on the set of operations in such a way that

(1) the near-unanimity operations form an equivalence class of the relation,

(2) a new notion of composition can be introduced on the equivalence
classes, and

(3) it is possible to algorithmically compute the closure of equivalence
classes under this new notion of composition.

We start the proof with the study of the binary operations that arise as
flx,...,z,y,x,...,x) from another operation f € O4.

Definition 3.1. For f € (91(;) and i € w, the ith polymer of fis f|; € Ba
defined as ith
flx,...;x,y,x,...,x) ifi<mn,
Fltem) ={ ( )

flx,...,x) if i >mn,

where y occurs at the ith coordinate of f in the first case. The collection of
polymers of f together with their multiplicities is the characteristic function
of f, which is formally defined as the map x s : B4 — w™ where

xrb) =Hicw: fli=0b}.

By the set of characteristic functions on a nonempty set A we mean the
set X4 = {xy : f € Oa}. Note that not every mapping of By to w™
is a characteristic function of some operation. In the following lemma we
characterize the ones that are.
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Lemma 3.2. A mapping x : Bo — w™ is a characteristic function of some
operation if and only if

(1) there ezists a unique element b € B4 such that x(b) = w,
(2) there are only finitely many ¢ € B4 such that x(c) # 0, and
(3) c(z,z) = b(x,y) whenever x(c) # 0 and x(b) = w.

Proof. To show that the given list of conditions are necessary, take an ar-
bitrary operation f € OXL). Put b = f|,. By Definition 3.1, b(z,y) =~
f(z,...,x) and f|; = b for all i > n, which proves that y(b) = w. Moreover,
for every ¢ € B other than b, x(c¢) = [{i < n: f|; = c}| is finite, proving
items (1) and (2). Finally, if x(c) # 0, then ¢ = f|; for some i € w, and
clr,z) ~ f(z,...,z) = b(z,y).

To show the other direction, take a mapping x : B4 — w™ satisfying
items (1)—(3). Let b € B4 be the unique element for which x(b) = w, and
put C = {ce€ By : x(c) € {0,w}}. By conditions (1) and (2), the set C' is
finite, and n = ) .~ x(c) is a finite number. Consequently, we can choose
a finite list &p,...,&—1 € B of elements such that {&,...,&,—1} = C and
x(c)={i<n:& =c}| forall c € C. Because of condition (3), there exists

an operation f € (’)XZH) that satisfies the following list of identities:

f(yaxaxa"'axaxvmaxax) ~ &)(‘Tay%

f(xayax7"'7x7x7xax7x> ~ §1($ay)7

fle,x,x,...,¢,y,x, 2,2

( )
b )
flz,z,z,... ¢,z 2, y,2) ~
( )
( )

T, L, Ty..., T, L,Y,T, T

~
~

f Ly Ly Ty Ty T, L, T,Y

~
~

flx,z,x,... .,z ,x,z, 2,2

Clearly, f|; = & for all i <n, and f|n = flot1 = flot2 = flngs = = 0.
Therefore, x s = x, which concludes the proof. O

We leave it to the reader to prove the following result that characterizes
near-unanimity operations by their characteristic functions.

Lemma 3.3. f € O4 is a near-unanimity operation if and only if Xt = Xnu
where xnu € X4 18 defined as

Youlb) = {w if b(x,y) =z,

0 otherwise.

Given a set G C O4 of operations, we define X(G) = {xs : f € G}.
By the last lemma, the kernel of the operator f +— x satisfies our goal (1)
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stated at the beginning of the chapter. To establish goal (2), we introduce
the notions of composition for operations and characteristic functions, and
consequently show that they correspond to one another under taking the
characteristic functions of the operations. If for a set G of operations we can
show that the corresponding set {x, : ¢ € G} of characteristic functions
is closed under this new notion of composition and does not include ypuy,
then we will be able to conclude that (G) does not contain a near-unanimity
operation, even if G is not a clone. First, we need the following definition.

Definition 3.4. By an extension of g € (’)51") we mean an operation ¢’ €

Ogm) satisfying

gl(x07 R xmfl) ~ g($0(0)7 e 7330(71—1))’
where o is an arbitrary injection of {0,...,n — 1} into {0,...,m —1}. By a
composition of f € OEZL) with extensions of gg, ..., gn—1 € O we mean an op-
eration of the form f(g(,...,q,_1) where g{,...,q},_1 € Ogm) are extensions
of go,...,gn—1, respectively, and are of the same arity m.

Clearly, the extensions of g are exactly the operations that can be ob-
tained from g by permuting the variables and introducing dummy variables.
As an example, all projections are extensions of the unary projection. It is
easy to see that if ¢’ is an extension of g, then x, = xy.

The full meaning of the following definition well be revealed in the proof
of Lemma 3.6, but first we motivate it by a simple example. Take operations
f e (’)1(42) and go,g1 € Ogm). We would like to describe the characteristic
function of f(go, g1) via the characteristic functions of f, go and g;. Clearly,
the ith polymer of f(go, g1) is f(goli, g1|:), which shows that x ¢ (g, ¢,) depends
not only on x ¢ but also on f. Furthermore, if g} is an m-ary extensions of g1,
then x4, = Xy, but in general g1li # 91li, and therefore X f(g0.91) 7 Xf(g0.9})-
This shows that besides x4, and x4, we also need to know which “variables”
of x4, correspond to the “variables” of x4,. What we need is an assignment,
denoted as a map p in the following definition, that with multiplicities assigns
the polymers of gg to that of g;.

Definition 3.5. We say that x € X, is a composition of f € OXL) with
X0s - -+ Xn—1 € X4 if there exists a mapping u : (B4)" — w™ such that

and

for all ¢ € B4 and i < n.



We introduce the following operators on O4 and X4. Given F,G C Oy,
we denote by Cz(G) the set of all possible compositions of operations f €
F) with extensions of go,...,gn_1 € G. We will use the same symbol for
the analogous operator for characteristic functions: given 7 C Oy and U C
X4, we denote by Cx(U) the set of all possible compositions of operations
f e F™ for some n € w, with characteristic functions xo, .. ., Xn—1 € U.

Lemma 3.6. XCr(G) = CeX(G) for all F,G C Og4.

Proof. To prove the inclusion C, take f € F™ and go,...,gn—1 € G, let
9o+ 91 € Oim) be extensions of gy, ..., gn—1, respectively, of the same
(m)

arity m € w, and put h = f(gg,...,9,_1) € O, . We need to show that x
is a composition of f with xg,,...,Xg,_,. Define p: (Ba)" — w™ as

M(B) = I{Z cw: <96’17ag;171‘1> :E}

)

which describes how many times the tuple b € (B4)" of binary operations
appear as the polymers of g, ..., g/, at the same coordinate i.
We check Definition 3.5 now. For each element ¢ € By,

oo u®) =[{icw: f(goli--rghali) = c}]

be(Ba)", f(b)=c
= |{i€w:h|¢:c}‘ = xn(c).

On the other hand, for each j < n and ¢ € By,

Y. ub)=Hicw:gili=c}=xq().

BE(BA)n, j=C

This shows that xj is a composition of f with Xghs -+ Xgl_,- Moreover,
since g} is an extension of g;, xg; = Xg! for all j < n. This completes the
proof of XCx(G) C C£X(G).

To prove the other inclusion, take an arbitrary xy € CzX(G). Then there
exist f € F), operations go, ..., gn_1 € G of arities my, ..., Mn_1, respec-
tively, and u : (B4)™ — w™ such that

x@= > b (3.6a)

and

Xg; (€) = p(b) (3.6b)
EE(BA n’ b]':C

for all ¢ € B4 and j < n. We will argue that y is the characteristic function
of a composition of f with extensions of gg,...,gn_1.
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Using equation (3.6a) we obtain

D )= X0 =w,

be (BA)" ceBa

where the second equality holds because x is a characteristic function. Con-
sequently, we can choose a mapping & : w — (B4)" such that

HZEw & —b}‘

for all b € (B4)". Now, using equation (3.6b), we get that

{icw:gili=c}l=xg() = =[{iew:&(); =}

be(Ba)™, bj—c

for all j < n and ¢ € B4. The cardinalities of the two sets on the two sides
are equal, therefore, for every j < n we can choose a permutation o; : w — w
such that

g5li = £(0;(1));
for all i € w. Put m = max{oc;(i) : j < n,i < m; }. Now, for all j < n,

the restriction of o; to the set {0,...,m; — 1} is an 1nJect10n into the set

{0,...,m — 1}. Define the operations Gos s € (’)( ™ a

95 (0, Tm—1) R Gi(To0)s -+ - > Tory (my—1))-

Clearly, each g} is an extension of g;. To complete the proof, we need to
show that the characteristic function of f(g(,..., g, ;) equals x.
Observe that

/ gj’o‘fl(i) if O—J_l(z) < mg,
]’Z = J .
gj(z,...,z) otherwise.

As a result, 93|z = gj|aj_1(i) for all ¢ € w, and therefore

93\1 = gj’U],—l(i) = f(UjUj_l(i))j =&(i);
for all ¢ € w and j < n. Then, for an arbitrary element ¢ € B4,

Xs (g ) (©) = [{E €0 Sl gpa)li = e |
:‘{iéw:f(g(l)\ ey Gnali) :CH
:‘{z’ew:f(g(l) v &)1 :CH
:‘{iEw:f(l_)):cwhereb— (Z)}|
= Z (b

be(Ba)™, f(b)=c
= x(c). -
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The following lemma turns the near unanimity problem into a prob-
lem about characteristic functions. We will use the power notation for
the composition operator. For F,G C O4 we define C(}_-(g) = @, and
C;H(g) = CzC%(G) for all n € w. We use the same power notation for
the composition of characteristic functions, as well.

Lemma 3.7. Let F C O4 and G C (F), and assume that G contains an
idempotent operation. Then (F) contains a near-unanimity operation if and

only if Xnu € Upe, CFX(G).

Proof. By Lemma 3.6, |, C%X(G) = X (Uy,e, C(G)). Consequently, by
Lemma 3.3, it is enough to show that (F) contains a near-unanimity op-
eration if and only if (J,c,, C(G) does. One direction is trivial because
Unew C%(G) C (F). For the other direction assume that f € (F)*®) is a

near-unanimity operation and g € G is an arbitrary idempotent opera-
tion. We define h € (F)*F™) a5

hMzo, .-y Zem—1) = fg(xoy oy Tm—1),- s 9 Thkm—mny - -+ s Thim—1))-
Clearly, h is a near-unanimity operation, and h € (J,,c,, C¢(G)- O

If G is the set of all projections on the set A and F C (g4, then
Uncw CH(G) = (F), and X(G) = {xia}, where xiq is defined as

w ifb(x,y) =z,
Xia(b) =41 if b(z,y) =y,
0 otherwise.

Thus, by the previous lemma, (F) contains a near-unanimity operation if
and only if xnu € U,e, Cr({Xia})- However, this condition does not seem
to be easier to check than the original one. We overcome this problem by
carefully choosing G so that the latter condition can be effectively tested.

Definition 3.8. For an integer £ > 1 we define a partial order Cj on w™ as
follows:

1+ 3k 2+ 3k 4k

1+ 2k 242k 3k
1+k 2+ k 2k
o( 1 2 k ow

Acting coordinate-wise, this defines a partial order on X4. For a set U C X4
denote by Fi(U) the order filter generated by U in X4, that is,

Fr) ={xX" € Xa: (x € U)(Vb € Ba)(x(b) T X'(b)) }-
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Recall that a partially ordered set (or simply poset) is called well-ordered,
if it has no infinite anti-chains and satisfies the descending chain condition,
i.e., contains no strictly decreasing sequence of elements. Clearly, (w'; Cy) is
well-ordered. It is known that subposets and finite products of well-ordered
posets are well-ordered (these are elementary facts, see e.g. [17]). Moreover,
the set of order filters of a well-ordered poset under the inclusion order
satisfies the ascending chain condition. Consequently, provided that A is
finite, (X4;Ck) is well-ordered and has no strictly increasing sequence of
order filters. From now on A is assumed to be finite.

Lemma 3.9. Let k> 1, F C Oy and U C X4. Then FrCr(U) C CrFi(U).
Consequently, CrFy(U) is an order filter.

Proof. Take arbitrary characteristic functions x € Cx(U) and x' € X4 such
that y T %. Thus y is a composition of an operation f € F™ and
characteristic functions xo, ..., xn—1 € U. By Definition 3.5, there exists a
map p: (B4)™ — w™ such that

x@= > b (3.9a)

be(Ba)™, f(b)=c

and

xi(c) = 14(b) (3.9b)

be(Ba)™, bi=c
for all ¢ € B4 and i < n. Let D be the set of binary operations d € By
where x(d) # x'(d). Since neither 0 nor w is comparable to any other element
under Cy, for all d € D, x(d) € {0,w} and x'(d) — x(d) equals to a positive
multiple of k. Using equation (3.9a), for each d € D we can choose an n-tuple
ba € (Ba)™ such that f(bg) = d and pu(bg) & {0,w}. Define p/ : (Ba)" — w™

,U«I(E) _ {H(
1
)

Clearly, u(b) Cy, 1/ (b) for all b € (Ba)™. Then by equation (3.9b), x; T X/
for all i < n where x} : B4 — w™ is defined as
Xie) = > )
BG(BA)", bi=c

+x'(d) — x(d) if b= by for some d € D,

otherwise.

for all ¢ € B4. On the other hand, by the choice of p/,
X(@= > WO
be(Ba), f(b)=c

for all ¢ € B4. This proves that x’ is a composition of f and the characteristic
functions xg, ..., Xh_1 € Fx(U) via the map p'.

To prove the second assertion of the lemma, consider the containments
FrCrFr(U) C CrFiFr(U) = CrFr(U) C FrCrFp(U) showing that CxFy(U)
is an order filter. O
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Lemma 3.10. Let k > 1, and let A, F C O and U C X4 be finite sets.
Then the minimal elements of (CrFy(U); Ck) can be effectively computed.

Proof. Choose an arbitrary minimal element x € CzFg(U). Then x is a
composition of an n-ary operation f € F( with some characteristic func-
tions X0, ..., Xn-1 € Fx(U) via a mapping p : (B4)" — wt. Observe in
Definition 3.5 that f and p uniquely determine y and xo,..., xn—1 via the
defining equations

x@= > b (3.10a)

be(Ba)™, f(b)=c

and

xi(c) = (). (3.10b)

Since A is finite, (B4)" is finite, and consequently the poset ((w™)B4)"; Cy)
is well ordered. Clearly, p is an element of this poset, so we can assume that
4 is minimal in this poset among all representations of x.

By the finiteness of A and U,

m =max ({k} U{x'(b) : X' €U,b € By and x'(b) #w})

is a (finite) natural number that depends only on k, A and . We claim
that u(b) € {0,...,m,w} for all b € (B4)", which is enough to conclude
our proof because then only finitely many operations f € F and finitely
many mappings p : (Ba)™ — {0,...,m,w} need to be considered to find all
minimal elements of CxFy(U).

To get a contradiction, assume that p(¢) > m and u(¢) # w for some
tuple ¢ € (Ba)". Define p’ : (Ba)" — w™ as

wwz{”m !
wu(b) —k if
and define x' and x§,...,x},_; using the defining equations (3.10a) and
(3.10b) for 4/, respectively. Observe that p/(¢) = u(¢) —k >m —k > 0.

First we argue that x; € Fy(U) for all i+ = 0,...,n — 1. Clearly, by
equation (3.10b), xi(b) = x;(b) for all b # ¢;. Moreover, either x/(¢;) =
xi(ci) = w or Xi(e;) = xi(ci) — k. In the former case, x; = xi € Frp(U).
In the latter case, x}(c¢;) = xi(ci) — k > p(@) —k > m —k > 0, where
the first inequality holds by equation (3.10b). Therefore, x| satisfies the
conditions of Lemma 3.2, so x; € X4. Since x; € Fr(U), there exists a
characteristic function x? € U so that x/ Cp x;. By the choice of m,
X7 (ci) < m < u(e) < xi(¢), consequently x7(c;) < xi(c;) — k. This proves
that x/ Tk x;. As a result, x; € Fr(U).

Analogously, x'(d) = x(d) for all d # f(¢), and either x/(f(¢)) =
Xx(f(@) =wor X' (f(@) =x(f(€)—k>m—k >0. Consequently, x' € X4

)
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by Lemma 3.2, and x' T x. Since x{,...,Xh_1 € Fe(U), we get that
X' € CgFr(U). From the minimality of x we see that x’ = x. But then p/
contradicts the minimality of u, which concludes the proof. O

Lemma 3.11. Let k > 1, and let A, F C O and U C X4 be finite sets.
Then U, e, CrFe(U) is an order filter with respect to Cy, and its minimal
elements can be effectively computed.

Proof. For every m € w define U, = UJ,,<,,, CrFr(U), where Uy = Fi(U).
For each m € w, U, is an order filter in (X'4; C;) whose minimal elements
can be effectively computed by Lemmas 3.9 and 3.10. Since A is finite,
(X4;Cg) is well-ordered and consequently the set of all its order filters under
the inclusion order satisfies the ascending chain condition. Therefore, the

ascending chain Uy C U; C Uy C ... of order filters cannot be strictly
increasing.
Assume that U, = U1 for some m € w. This condition is equivalent

to that of C"*'Fy(U) € U, <, C#Fr(U). Applying Cx to both sides we get
that
PR S | CEFRU) S U
1<n<m+1
Consequently, Up,+1 = Um+2- By induction, we obtain that U, = Up+1 =
Uni2 = ..., as aresult Uy, =, e, CrFrU).

This yields an algorithm to find (J,,¢,, C¥Fi(U). Calculate Up,Us, ... in
order using Lemma 3.10. If U, = Upn4+1 for some m € w, then we have
found (J,,¢,, C’¥Fi(U) and know its minimal elements. This condition must
occur and therefore the algorithm stops, because we cannot have a strictly
increasing sequence of order filters in (X 4;Cp). O

The previous lemma shows that the minimal elements of the infinite union
Unecw CFX(G) of Lemma 3.7 can be effectively calculated provided that X(G)
forms an order filter in (X4;Cy) for some & > 1. We will argue that such
integer k and set G C (F) can be found if (F) contains a near-unanimity
operation. We need the following definition.

Definition 3.12. Let k € w and f € (954”). We call f a k-nu operation if
k <n and

f(l‘,...,l‘)%x7
flo(z,y) ~ -~ flp—1(z,y) and
f|k(l’,y)% '%f‘nfl(rx,y)%l‘.

This concept is the generalization of that of near-unanimity and weak
near-unanimity operations. The 0-nu operations are precisely the near-
unanimity operations, while the k-nu operations of arity k& are called weak
near-unanimity operations.

Lemma 3.13. If a clone on an m-element set contains a near-unanimity
operation, then it contains a 2-nu operation of arity at most 2 + mm.
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To prove this lemma, we need the following theorem.

Theorem 3.14 (L. Lovasz [18]). Let n, k be natural numbers such that 2 <
2k < n, and G, be the graph on the set of all k-element subsets of an

n-element set with the disjointness relation. Then the chromatic number of
G isn— 2k + 2. ]

Proof of Lemma 3.13. Let C be a clone and f € C be a near-unanimity
operation of arity n. If n < 1+ mm2, then we are done as f is a 2-nu

operation. Otherwise n — mm > 2. Put

k= V_mszrlJ.
2

By the choice of k, we have n — mm <2k <n-— mm + 1, from which it
follows that 1 +m™ <n—2k+2<2+m™ and 2 < 2k < n.

We color each k-element subset I C {0,...,n—1} by the binary operation
f|r defined as

fli(z,y) = f(ug,...,un—1) where wu;= {x le 71
y ifiel.

There are m™ binary operations on an m-element set, thus we colored the
graph G, ;, with m™" colors. Since the chromatic number of this graph is
n — 2k + 2, by Theorem 3.14, and n — 2k + 2 > mm2, there must exist two
disjoint k-element subsets I,J C {0,...,n — 1} for which f|; = f];.

Choose an arbitrary bijection 7 from {0,...,n—1}\(IUJ) to {0,...,n—
2k — 1}. We claim that the following operation is a 2-nu operation in C of
arity at most 2 4 mm’:

x ifiel,
g(x7y7207--~72'n—2k—1) :f(u07"'7un—1) where Ui =Y iti e J,
Zr(;) Otherwise.

Clearly, g € C and its arity is n — 2k + 2 < 2 + mm. Moreover, glp =
flr = fls = gl1, and for all i > 2, g|l; = f[,-1_2) = = because f was a
near-unanimity operation. This proves that ¢ is a 2-nu operation. O

Lemma 3.15. Let C be a clone on an m-element set that contains a k-nu
operation of arity k + n. Then C contains a k™ -nu operation f of arity
K™ + n such that

flo(z, flo(x, ) = flo(x, y)-

Proof. Let A be the underlying set of C, and g € C be a k-nu operation of
arity k+n. By induction we define a sequence g1, g2, g3, . . . € C of operations
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of arities k + n, k? +n, k> +n, ..., respectively. Put ¢g; = g, and for i > 1
put

Jit1(T0, - Tpit1 -1, Y05 -+ -, Yn—1)
= g(gz($05 sy Lpi_15,Y0y - - - 7yn—1)7 ceey
Gi(T(h—1)kir -+ Thi+1 1, Y05+ -+ Y1) Y05 - -+ Yn—1) -
Since g is idempotent, i.e. g(z,...,x) = z, the defined operations g1, g2, . . .

are idempotent, as well. For each element z € A define the unary operation
hz(y) = glo(z,y). We claim that, for each i > 1 and j € w,

hy(y) if j <K,
T if j > k'

gilj(z,y) :{

This holds for g; by definition. Let i > 1 and j < k"1, Choosing [ < k such
that 1k! < j < (I + 1)k’ we get that

gir1li(z,y) :g(gi(xa”'7x)7-~79i(x7"'7x)79i|jflki(xay)v
g,-(:];,...,x),...,gi(x,...,x),a:,...,a:)
:g|l(xagi‘jflki(x7y)>
= ha (R (y)
= hi (y)-

Finally, if i > 1 and k! < j < k¥t 4+ n, then
Git1lj(z,y) = g(gi(z, ... x), ... gi(x,...,x),2,...,2,y,2,...,2))

= glj—pit141(2,y)
= X.

This proves that each g; is a k*-nu operation of arity k* + n. We argue that
f = gm is the operation we claimed in the statement of the lemma. Indeed,
since h, is a unary operation on an m-element set, it is elementary to verify
that A is idempotent, that is, ™ = h2™ . Then,

Flo(, flo(z,y)) = B (B () = P (y) = flo(@,y). O
Lemma 3.16. Let A be a finite set of size m.

(1) If a clone on A contains a near-unanimity operation, then it contains
a 2™ -nu operation g of arity at most 2™ + m™ that satisfies

glo(z, glo(z,y)) = glo(z,y).

(2) If g € Oy is a 2™ -nu operation satisfying the above identity, then there
erists a set G C ({g}) such that G contains an idempotent operation

and X(G) = Fom _1({X4})-
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Proof. The first statement follows immediately from Lemmas 3.13 and 3.15.
To prove the second statement, let g be a 2™'-nu operation of arity 2™ + k
that satisfies the identity of the lemma. If g is a near-unanimity operation,
then we can choose G = {¢g}. Thus assume that ¢ is not a near-unanimity
operation. By induction, we define a sequence of operations ¢g; € ({g})
(i =1,2,...) of arity (2™ — 1) + 1 + k, respectively. Put g; = g, and for
all positive integers ¢ define

gi+1 ($0> cee 7x(i+1)(2m!—1)’ Yo, - - - )yk—l)
= gz(g(x[), cee sy Lom!_1,Y0y - - - 7yk—1))
me!, “ e ,x(i+1)(2m!71), y07 . e ,ykfl). (316&)

We claim that each g; is a (i(2™ — 1) + 1)-nu operation and g;|o = go-
This holds trivially for g;. We prove this by induction, so assume that the
claim holds for g;. Clearly, gi11 is idempotent. If 0 < j < 2™ then

gi+1lj(®,y) =~ gilo(z, glj(z,v)) = glo(z, glo(z,v)) ~ glo(z,y),

where the first identity follows from (3.16a), gilo = glo by the induction
assumption, g|; = glo since g is a 2™'_nu operation, and finally the last
identity was assumed in the statement of the lemma. On the other hand, if
2 < j < (i+1)(2™ —1), then

9i+1l5(2,y) = gilj—@m_1)(z,y) = glo(z, y),

where the first identity holds because the first argument of g; on the right
hand side of equation (3.16a) is g(z,...,x) ~ x, and the variable z; is at
the j — (2™ — 1)-th argument of g;. Finally, if (i + 1)(2™ — 1) < j <
(i +1)(2™ — 1) 4+ k, i.e., we plug in y into one of the y coordinates in
equation (3.16a) and x everywhere else, then we get g;11];(z,y) = x, because
9lj—iem—1)(x,y) =~ x and gi|;_(gm_1y(z,y) ~ x. This finishes the proof of
the claim.
From the claim it immediately follows that

w if b(z,y) =~ z,
Xg,(b) = € i(2™ = 1) +1 i b(z,y) = glo(z,y),
0 otherwise,

which is well defined, because g|o(x,y) % x since we assumed that ¢ is not
a near-unanimity operation. Now put G = {g1,¢2,...}. Clearly, X(G) =

Fom_1({Xg})- O
Theorem 3.17. Given a finite set A and a finite set F of operations on A,

1t is decidable whether the clone generated by F contains a near-unanimity
operation.
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Proof. Put m = |A|. First we check if (F) contains a 2"-nu operation of
arity at most 2™ +m™” that satisfies the identity of Lemma 3.16. If such an
operation is not found, then (F) cannot have a near-unanimity operation.
If g € (F) is such an operation, then by the same lemma we know that
there exists a set G C ({g}) C (F) of operations such that G contains
an idempotent operation and X(G) = Fymi_1({Xx4})- We do not need to
“compute” the set G, in fact it is infinite. Then by Lemma 3.11, the minimal
elements of the order filter

U= ChFama(xoh) = | C3X(9)

new new

can be effectively computed. By Lemma 3.7, the clone (F) contains a near-
unanimity operation if and only if x, € U. But this can be easily checked if
we know the minimal elements of U. In fact, ypy is minimal in (X4; Comi_q),
and therefore must be among the minimal elements of /. O

48



References

[1]

2]

3]

[4]

5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

L. M. Bobek: Groups Acting on Join Semilattices. Ph.D. dissertation,
Browling Gree State University, 1992.

S. Burris and H. P. Sankappanavar: A course in universal algebra. Grad-
uate Texts in Mathematics, Springer-Verlag, New York, 1981.

S. Burris and M. Valeriote: Expanding varieties by monoids of endo-
morphisms. Algebra Universalis 17 (1983), 150-169.

B. A. Davey: Duality theory on ten dollars a day. Algebras and Orders
(Montreal, 1991), NATO Advanced Study Institute Series, Series C,
389, 71-111.

B. A. Davey, L. Heindorf and R. McKenzie: Near unanimity: an obstacle
to general duality theory Algebra Universalis, 33 (1995), 428-439.

B. A. Davey and H. Werner: Dualities and equivalences for varieties of
algebras. Contributions to lattice theory (Szeged, 1980), Colloq. Math.
Soc. Janos Bolyai, 33 (1983), 101-275.

R. El Bashir and T. Kepka: Commutative semigroups with few invariant
congruences. Semigroup Forum 64 (2002), 453-471.

T. Feder and M. Y. Vardi: The computational structure of monotone
monadic SNP and constraint satisfaction: A study through Datalog and
group theory. STAM Journal of Computing 28 (1998), no. 1, 57-104.

D. Hobby and R. McKenzie: The structure of Finite algebras. Contem-
porary Mathematics 76, American Mathematical Society, Providence,
RI, 1988.

P. Jeavons, D. Cohen and M. C. Cooper: Constraints, consistency and
closure. Artificial Intelligence 101 (1998), 251-265.

J. Jezek: Simple semilattices with two commuting automorphisms. Al-
gebra Universalis 15 (1982), 162-175.

J. Jezek: Subdirectly irreducible semilattices with an automorphism.
Semigroup-Forum 43 (1991), 178-186.

J. Jezek and M. Maroti:  Membership problems for finite entropic
groupoids. (manuscript).

K. A. Kearnes: Semilattice modes 1. The associated semiring, II. The
amalgamation property. Algebra Universalis 34 (1995), 200-303.

K. A. Kearnes and A. Szendrei: Self-rectangulating varieties of type 5.
Int. Journal on Algebra and Computation 7 (1997), 511-540.

49



[16] O. G. Kharlampovich and M. V. Sapir: Algorithmic problems in vari-
eties. Int. Journal of Algebra and Computation 5 (1995), 379-602.

[17] J. B. Kruskal, The theory of well-quasi-ordering: A frequently discovered
concept. Journal of Combinatorial Theory, Series A 13 (1972), no. 3,
297-305.

[18] L. Lovasz: Kneser’s Conjecture, Chromatic Numbers and Homotopy. J.
Combin. Theory, Series A, 25 (1978), 319-324.

[19] M. Maroti: Semilattices with a group of automorphisms. Algebra Uni-
versalis, 38 (1997), no. 3, 238-265.

[20] M. Maroti: On the (un)decidability of a near-unanimity term. (submit-
ted)

[21] M. Maroti: The existence of a near-unanimity term in a finite algebra
is decidable. (manuscript)

[22] M. Maroti: The variety generated by tournaments. Vanderbilt Univer-
sity, Ph.D. dissertation, 2002.

[23] R. McKenzie: Is the presence of a nu-term a decidable property of a
finite algebra? October 15, 1997 (manuscript).

[24] R. McKenzie, G. McNulty and W. Taylor: Algebras, Lattices, Varieties,
Volume I. Wadsworth & Brooks/Cole, Monterey, CA, 1987.

[25] M. L. Minsky: Recursive unsolvability of Post’s problem of ‘“tag”
and other topics in the theory of Turing Machines. Ann. Math. 74
(1961), 437-455.

[26] M. L. Minsky: Computations: finite and infinite machines. Prentice-
Hall, Englewood Cliffs, N.J., 1967.

[27] E. L. Post: The two-valued iterative systems of mathematical logic.
Number 5 in Annals of Math. Studies. Princeton Univ. Press, 1941.

[28] M. O. Rabin and D. Scott: Finite automata and their decision problems.
IBM Journal of Res. and Devel. 3 (1969), no. 2, 114-125.

[29] A. Romanowska: An introduction to the theory of modes and modals.
Proceedings of the International Conference on Algebra (Novosibirsk,
1989), Contemporary Mathematics 131 (1992), Part 3, 241-262.

[30] A. Romanowska and J. D. H. Smith: Modal theory: an algebraic ap-
proach to order, geometry, and convexity. Research and Exposition in
Mathematics vol. 9, Heldermann Verlag, Berlin, 1985.

[31] A. Szendrei: Clones in universal algebra. Volume 99 of Séminaire de
mathématiques supérieures. Les presses de ’Universit’e de Montréal,
Montréal, 1986.

50



Summary

The three chapters of my dissertation are based on the papers [19, 20]
and [21], respectively. The first paper is not related to the main topic of
the dissertation—decidability problems—but gives a complete description of
the simple algebras in the variety of semilattices expanded by an abelian
group of automorphisms. In the second paper we study the decidability of
the near-unanimity problem, posed ten years ago in [5], and prove a partial
version of it to be undecidable. In the last, unpublished paper we show that
the original problem, contrary to expectations, is decidable. As a conse-
quence, we obtain the decidability of the natural duality problem for finitely
generated, congruence distributive quasi-varieties.

We assume basic knowledge of universal algebra and direct the reader
to either [2] or [24] for reference. Although the study of the near-unanimity
problem stems from that of natural dualities (see [4, 5, 6]), the reader is
not required to know this theory. For easier reference, we kept the original
numbering of definitions and theorems of the dissertation.

F-semilattices

One of the primary goals of universal algebraic investigations is the full de-
scription of broad classes of algebras. According to a theorem of G. Birkhoff,
in equational classes of algebras, such as in the varieties of groups, rings and
lattices, every algebra can be expressed as a subdirect product of subdirectly
irreducible members of the class. Therefore, these subdirectly irreducible
algebras can be considered as the building blocks of varieties. The descrip-
tion of subdirectly irreducible algebras is particularly important because the
study of many algebraic properties can be reduced to that of subdirectly
irreducible algebras.

This description is trivial in the variety of semilattices because only the
two-element semilattice is subdirectly irreducible. The situation is not this
simple in other varieties, e.g., every subdirectly irreducible algebra in the
variety generated by tournaments is a tournament, but not every algebra
is [22]. There are (residually large) varieties, such as the variety generated
by the quaternion group, where the subdirectly irreducible algebras form a
proper class, and their full description is practically beyond hope. Therefore,
in many cases we restrict ourselves to the study of simple algebras, i.e.,
subdirectly irreducible algebras that have only trivial congruences. Even this
problem is extremely difficult in general, as witnessed by the classification
of finite simple groups.

Algebras with a commuting semilattice operation, i.e., satisfying the iden-
tity

flei ANy, ,xzn Ay1) = f(xr, oo, zn) A f(yr, oo, Yn)

for all basic operations f, have been studied in various forms. In many
respects these algebras behave similarly to modules. For example, it is proved
in [15] that if a locally finite variety of type-set {5} satisfies a term-condition
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similar to the term-condition for abelian algebras, then it has a semilattice
term that commutes with all other term operations.

Within the class of modes—that is, idempotent algebras whose basic
operations commute with each other—those having a semilattice term oper-
ation play an important role (see [29, 30]); these algebras are called semilat-
tice modes. The structure of locally finite varieties of semilattice modes is
described in [14].

An interesting class of algebras with a commuting semilattice operation
arises if we add automorphisms, as basic operations, to a semilattice. This
is a special case of the construction studied in [3|. In general, one can
expand any variety V by a fixed monoid F of endomorphisms in a natural
way. The expanded variety is the variety of V-algebras A equipped with new
unary basic operations, acting as endomorphisms on A. We study only the
following special case.

Definition 1.1. An algebra S = (S; A, F') with a binary operation A and a
set F of unary operations is an F-semilattice, if F = (F;-,71,id) is a group
and S satisfies the following identities:

1) the operation A is a semilattice operation,

2) id(z) =

3) f(g(x) ~ (f - g)(x) for all f,g € F, and
4) f(xANy) = f(z) N f(y) forall f € F.

Note that every semilattice can be considered as an F-semilattice in a
trivial way: every unary operation of F' acts as the identity function. A
much more interesting example of an F-semilattice is the following.

(1)
(2)
(3)
(4)

Definition 1.2. For a group F = (F;-, 71,id) let P(F) = (P(F); A, F) be
the F-semilattice which is defined on the set P(F) of all subsets of F' by
setting

(1) ANB=AnBforal A,BCF, and
(2) f(A)=A-flforall fe Fand ACF.

Our first important statement reduces the study of subdirectly irreducible
F-semilattices to that of the subalgebras of P(F).

Lemma 1.6. If S is a subdirectly irreducible F-semilattice, then S is iso-
morphic to a subalgebra U of P(F). The algebra U can be selected so that
it has a unique element M C F with the following properties:

(1) ide M and M - M =M,
(2) A=M-A forall Ac U, and
B) M=N{AeU]l|ide A}.
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In [12] J. Jezek has described all subdirectly irreducible (Z;+)-semilat-
tices. Using our lemma above, we can easily describe the finite subdirectly
irreducible F-semilattices (Proposition 1.4), and all subdirectly irreducible
F-semilattices when F is locally finite (Corollary 1.7). In these special cases
the subdirectly irreducible subalgebra U of P(F') contains the empty set and
some subgroup M of F. These elements also play an important role in the
following class of simple F-semilattices.

Definition 1.8. If F is a fixed group and M is a subgroup of F, then let
Sas denote the subalgebra of P(F'), the elements of which are the empty set
and the right cosets of M.

Thus the empty set is the least element in Sy, and the right cosets of
M are the atoms. The set F' of unary operations of Sj; acts as a transitive
permutation group on the set of atoms. It is not hard to show that the
algebras Sy are exactly those simple subalgebras of P(F') that have a least
element and some atoms.

In [11] J. Jezek has described all simple algebras in the variety of semilat-
tices expanded by two commuting automorphisms, that is, in the variety of
(Z x Z;+)-semilattices. We generalize this result to arbitrary commutative
groups, which is our main result in this chapter.

Definition 1.13. Let F be a fixed commutative group. Then for every
nonconstant homomorphism £ from F to the additive group (R;+) of the
real numbers let us define an F-semilattice Rg = (R;min, F') as follows:

(1) min(a,b) is taken with respect to the natural order of R, and
(2) f(a) =a—p(f) for all f € F and a,b € R.

Definition 1.16. A homomorphism 3: F — (R;+) is called dense if for each
real number £ > 0 there exists an element f € F such that 0 < 8(f) <e.

If the homomorphism ( in Definition 1.13 is not dense, then the range
of 3 is isomorphic to (Z;+). We will consider this case separately:

Definition 1.18. Let F be a fixed commutative group. Then for every
surjective homomorphism a from F onto the additive group (Z;+) of the
integers let Z,, = (Z;min, F') be the F-semilattice defined as follows:

(1) min(a,b) is taken with respect to the natural order of Z, and
(2) f(a) =a—a(f) for all f € F and a,b € Z.

Theorem 1.21. If F is a commutative group, then every simple F-semi-
lattice is isomorphic to one of the following algebras:

(1) Sas, where M is a subgroup of F,

(2) Z, where a: F — (Z;+) is a surjective group homomorphism, and
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(3) the subalgebras of Rg, where : F — (R;+) is a dense group homo-
morphism.

Furthermore, these simple F-semilattices are pairwise nonisomorphic, except
for the case when (1, B2 are dense homomorphisms, S1,So are subalgebras
of Rg,, Rg, respectively, and there exist real numbers t > 0 and d such that
,82 = tﬂl and SQ = tSl + d.

We conclude this chapter by noting that there exists a simple F-semilat-
tice in the nonabelian case that has a least element but no atom and its
semilattice order is not linear.

Duality theory and the near-unanimity problem

General duality theory is capable of describing various well-known dualities—
for example Pontryagin’s, Stone’s and Priestley’s—between a category A of
algebras with homomorphisms and a category X of topological structures
with continuous structure preserving maps (see [6]). In these cases the class
A is a quasi-variety generated by a single algebra P € A, and X is the
class of closed substructures of powers of an object P € & having the same
underlying set as P. Without getting into the details, we note that the points
of the dual A € X of an algebra A € A are the homomorphisms ¢: A — P;
while the elements of the dual X € A of a topological structure X € & are
the f: X — P continuous structure preserving maps.

Example. For the Pontryagin duality, A is the class of abelian groups,
P = (P;-, 71, 1) is the circle group on the set P = {z € C : |z| = 1} of
complex numbers with multiplication, X is the category of compact topolog-
ical abelian groups, and P = (P;-, 1.1, 7) where T is the restriction of the
natural topology of the complex plane to P.

Example. For the Stone duality, A is the category of Boolean algebras,
P = ({0,1};A,V,’,0,1) is the two-element Boolean algebra, X is the category
of totally disconnected Hausdorff spaces, and P = ({0,1};7) where T is the
discrete topology. It is easy to see that the ultra filters of a Boolean algebra
A € A correspond to the homomorphisms of A onto P.

Example. For the Priestley duality, A is the category of bounded distributive
lattices, P = ({0,1}; V, A, 0,1) is the two-element bounded distributive lattice,
X is the category of totally order-disconnected spaces, and P = ({0,1}; <, 7)
where T is the discrete topology. It is easy to see that the prime filters of a
distributed lattice A € A correspond to the homomorphisms of A to P.

We say that an algebra P admits a natural duality, if there exists a
topological structure P defined on P such that the quasi-variety generated
by P is dually represented, as defined by duality theory, by the category X
of closed substructures of powers of P. Therefore, to leverage the power of
duality, it is natural to ask which finite algebras admit a natural duality. Is
this characterization possible? Is it decidable of a finite algebra P whether
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it admits a natural duality? This second question is known as the natural
duality problem. Currently, we do not know the answer to this problem, but
many expect it to be undecidable.

The natural duality problem was partially reduced to a pure algebraic
problem in the following way. We call a term ¢ of an algebra P a near-
unanimaty term if it satisfies the following identities:

ty,z,...,z) =tx,y,z,...,z) = =t(x,...,z,y) = .

An algebra is congruence join-semi-distributive if its congruence lattice sat-
isfies the quasi-identity

xVy=zVz = xV(yAz)=xVy.

B. A. Davey and H. Werner proved in [6] that in the presence of a near-
unanimity term of P, the quasi-variety A generated by P admits a natural
duality. The converse was proved in [5] under the assumption that A is
congruence join-semi-distributive:

Theorem (B. A. Davey, L. Heindorf and R. McKenzie [5]). Let P be a
finite non-trivial algebra and let A be the quasivariety generated by P. The
following are equivalent:

(1) P has a near-unanimity term;

(2) P admits a natural duality, and every algebra in A is congruence dis-
tributive; and

(3) P admits a natural duality, and every finite algebra in A is congruence
join-semi-distributive.

This theorem, known as the near-unanimity obstacle theorem, motivates the
near-unanimity problem, the problem of deciding whether a finite algebra has
a near-unanimity term. Clearly, if the arity of the near-unanimity term of P
is known, then finding the near-unanimity term is easy by simply calculating
the free algebra in A generated by the appropriate number of elements. The
difficulty lies in the fact that we do not even have an upper bound for the
arity of a possible near-unanimity term.

Near-unanimity term operations come up naturally in the study of alge-
bras. For example, all lattices have a ternary near-unanimity term

(xAY)V(yAz)V(zAz).

From E. L. Post’s classification [27] we know that almost all clones on a two
element set contain a near-unanimity operation. It is also well known that
an algebra having a near-unanimity term lies in a congruence distributive
variety, and has a finite base of identities provided it is of finite signature
(see [31])).

55



It is easy to decide whether the quasi-variety A generated by a finite
algebra P is congruence distributive because it is enough to search for Jons-
son terms among the finitely many ternary terms of P. Therefore, by the
near-unanimity obstacle theorem, if the near-unanimity problem were unde-
cidable, then the natural duality problem would also be undecidable.

The undecidability of a partial near-unanimity term

In an attempt to prove the undecidability of the near-unanimity problem the
following approach was taken by R. McKenzie.

Definition 2.1. Let A be a fixed finite algebra, t(z1,...,z,) be a term
of A, and S C A. We say that ¢ is a partial near-unanimity term on S if

ty,z,...,z) =t(x,y,z,...,x) = =t(x,...,z,y) ==z
for all x,y € S.

Clearly, a term of A is a near-unanimity term if and only if it is a partial
near-unanimity term of the two-generated free algebra in the variety gener-
ated by A on the set {z,y} of generators. Thus it is natural to study the
decidability of the partial near-unanimity problem on some fixed subset of
a finite algebra. It is proved in [23] that the existence of a partial near-
unanimity term on a fixed two-element subset is undecidable. In Chapter 2
we extend this result to a subset excluding two fixed elements:

Theorem 2.2. There exists no algorithm that can decide of a finite algebra
A and two fized elements r,w € A if A has a partial near-unanimity term

on the set A\ {r,w}.

This theorem does not seem to be significant after learning the decidabil-
ity of the near-unanimity problem. Nevertheless, the methods used in the
proof are interesting on their own and may be useful for the study of other
decidability problems.

In the proof of this theorem we employ Minsky machines, which are
equivalent to Turing machines (see [25, 26]). The “hardware” of a Minsky
machine consists of a pair of registers that can contain arbitrary natural
numbers. The “software” is a finite set of states containing an initial and
a halting state together with a list of commands. There are two types of
commands: the first instructs the machine to increase the value stored in
one of the registers by one, and then to go to another state. The second
command first checks the value stored in one of the registers; if it is zero, then
the machine goes to one state; otherwise the value stored in the register is
decremented by one and the machine goes to another state. The computation
of the machine is a possibly infinite sequence of states together with the
values of the registers at each step.

Since the halting problem for Minsky machines is undecidable, it is
enough to construct (by an effective algorithm) for each Minsky machine M
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an algebra A (M) with two special elements r,w € A(M) such that A(M)
has a partial near-unanimity term on the set A(M)\ {r, w} if and only if M
halts.

In the construction the universe and the set of basic operations of A (M)
depend on the set of states and commands of M, respectively. Our goal
is to encode the halting computation of M into a partial near-unanimity
term. The key step is to show that given a partial near-unanimity term ¢
on A(M) \ {r,w} one can reconstruct the halting computation of M from
the term tree of ¢. The definition of the basic operations forces the shape of
the tree to be almost “linear” with the basic operations encoding a sequence
of commands of M. With the proper definition of the basic operations,
for example making their range pairwise disjoint, we can easily ensure that
the sequence of states is correct except possibly those steps where the next
state depends whether the content of a register is zero or not. We solve this
difficulty by encoding whether the contents of registers are zero at each step
together with the states. We cannot encode the actual values of the registers,
which can be arbitrary large natural numbers, because A (M) must be finite.
Our final task is to verify whether the sequence of states together with these
special markings for zero values correspond to the halting computation of
M. We achieve this by forcing an appropriate matching of the variables of
t via the known value of ¢ at near-unanimous evaluations.

The element w € A(M) has (essentially) the absorbing property: for all
basic operations f(x1,...,x,) and elements z1,...,z, € A(M) the implica-
tion

we{ry,...,tn} = f(z1,...,2n) =w

holds. We use w to indicate that either the shape of ¢ is incorrect, or the
sequence of encoded states does not correspond to that of the halting compu-
tation. If some local inconsistency is detected, then one of the basic opera-
tions in the term tree returns w at an appropriate near-unanimous evaluation
(z,...,x,y,z...,z). Then the element w propagates to the root of ¢ by the
absorbing property, thus t(x,...,z,y,z,...,2) = w, which is a contradic-
tion.

An improvement of this method might be possible to the subset A(M)\
{w}, which could be formulated, analogously to the results in [13], as the
undecidability of the near-unanimity problem for partial algebras:

Problem 1. Given a finite partial algebra, decide whether it has a term that
1s defined on all near-unanimous evaluations and satisfies the near-unanimity
1dentities.

The decidability of a near-unanimity term

In the last chapter of the dissertation we prove the decidability of the near-
unanimity problem, a rather surprising development after the negative par-
tial results. We state this theorem in the language of clones:
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Theorem 3.17. Given a finite set A and a finite set F of operations on A,
1t is decidable whether the clone generated by F contains a near-unanimity
operation.

Instead of working with operations and their composition, we introduce
an equivalence relation on the set of operations in such a way that

(1) the near-unanimity operations form an equivalence class of the relation,

(2) a new notion of composition can be introduced on the equivalence
classes, and

(3) it is possible to algorithmically compute the closure of equivalence
classes under this new notion of composition.

Based on these requirements, our next definition might not be so surprising.
We will need the following notations. Let w and w™ be the set of all finite and
countable cardinals, respectively. Let O4 be the set of all operations on the
set A, and for n € w let O%) = A" that is, the set of all n-ary operations
on A. Given an operation f € O4, we consider those binary operations—
called polymers—with their multiplicities that arise as f(z,...,z,y,z,..., )
where the lone y is at a fixed coordinate:

Definition 3.1. For f € (’);n) and i € w, the ith polymer of f is f|; € Of)
defined as

flzy...,z,y,z,...,x) if0<i<n,
flx,...,x) ifi >mn,

fli(z,y) = {

where y occurs at the ith coordinate of f in the first case. The collection of
polymers of f together with their multiplicities is the characteristic function

)

of f, which is formally defined as the map x; : (’);2 — wT where

xrb) =Hicw: fli=0b}.

Clearly, near-unanimity operations are characterized by their polymers;
namely all of them must be equal to x. Therefore, the characteristic functions
of near-unanimity operations are the same and equal to

w if b(z,y) =~ x,
nu b) =
Xau(b) {0 otherwise.

Let X4 be the set of characteristic functions of operations on A. Now the
kernel of the operator

X: Oy — Xy, X: f=xy

satisfies our condition (1) stated above.
We do not give the technical definition of the composition operator Cr
as the following shall be sufficient. We distinguish the “outer” set 7 C Oy4
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of operations from the “inner” objects on which we apply the members of F.
For F,G C O4 the set C£(G) contains all operations ¢ of the form

t(yla"'7y]€) = f(g(xllv"' :xln)a---7g($m17-'-a$mn))7

where f € F and g € G are m and n-ary operations, respectively, and
{z11,- - s Zmn} S {y1,...,yr}- We employ the same operator symbol Cx for
characteristic functions, thus Cz(U) C X4 for every U C X4. The connection
between the two composition operators, the real meaning of condition (2),
is expressed by the next lemma.

Lemma 3.6. XCr(G) = C£X(G) for all F,G C Og4.

Up to this point, we showed that the clone (F) generated by F C Oy
contains a near-unanimity operation if and only if the characteristic function
Xnu can be obtained from the characteristic function y;q of the unary projec-
tion by finitely many applications of the composition operator Cr. However,
we are still far from establishing requirement (3), our ultimate goal.

Suppose that the sets A and F C O4 are finite, and that the clone (F)
contains a near-unanimity operation. Then, using a theorem of L. Lovész
on the chromatic number of Kneser graphs [18], we can show that (F) must
contain an operation g of bounded arity (dependent only on |A|) that satisfies
a set of technical identities similar to that of near-unanimity operations. We
can effectively find g since its arity is bounded.

Recall that a partially ordered set is called well-ordered, if it has no in-
finite anti-chains and satisfies the descending chain condition, i.e., contains
no strictly decreasing infinite sequence of elements. Using the properties
of g, we introduce a well-ordered partial order on a special subset of X4.
By applying the composition operator Cr to an order filter of characteristic
functions, we get another order filter whose minimal elements can be effec-
tively computed from that of the original filter. If we apply the composition
operator iteratively, we get an increasing sequence of order filters under in-
clusion. However, a well-ordered partially ordered set cannot have a strictly
increasing infinite chain of order filters, therefore this process must termi-
nate in finitely many steps. This proves that the closure of characteristic
functions under the composition operator can be effectively calculated.

As an immediate consequence of the decidability of the near-unanimity
problem and the near-unanimity obstacle theorem from [5], we also obtain
the decidability of the natural duality problem for finite algebras in a con-
gruence join-semi-distributive variety.

Since there are only finitely many algebras on a fixed n-element set whose
basic operations are at most r-ary, by the decidability of the near-unanimity
problem, there exists a recursive function N(n,r) that puts an upper limit
on the minimum arity of a near-unanimity term operation for those alge-
bras that have one. Consequently, given an algebra P whose operations are
at most r-ary, one can decide the near-unanimity problem by simply con-
structing all at most N (|P|, r)-ary terms and checking if one of them yields a
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near-unanimity operation. If no such is found, then P has no near-unanimity
term operation. We know that such recursive function N(n,r) exists, but
currently we do not have a formula for one.

A very interesting group of open problems is related to the constraint
satisfaction problem, which we do not define here and refer the reader to [8]
for details. It is proved in [10] that if a set ' of relations on a set admits
a compatible near-unanimity operation, then the corresponding constraint
satisfaction problem CSP(T") is solvable in polynomial time. Therefore, it is
natural to consider the near-unanimity problem for relations:

Problem 2. Given a finite set I' of relations on a set, decide whether there
exists a near-unanimity operation that is compatible with each member of T.

Currently we are unable to solve this problem, even in the light of our
result. We know that if a clone has a near-unanimity operation, then both the
clone and its dual relational clone are finitely generated (see [31]). Inspired
by this fact, we ask the following:

Problem 3. Given a finite set of operations and a finite set of relations on
the same underlying set, decide if the functional and relational clones they
generate are duals of each other.
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Osszefoglalé

Doktori értekezésemet a [19, 20] és [21] dolgozatok eredményeibd] allitottam
Ossze. Az els6 dolgozat témaja nem kapcsolodik szervesen az értekezésem
cimét ado eldonthetGségi problémak koréhez, hanem egy specialis algebra-
osztaly egyszerd algebriit irja le. A masodik dolgozatomban egy tiz éve
megoldatlan eldonthet&ségi problémat, az tgynevezett tobbségi fliggvény 1é-
tezésének problémajat vizsgilom, és annak egy parcialis valtozatanak eldont-
hetetlenségét bizonyitom. A harmadik, még nem publikalt dolgozatomban
megmutatom, hogy az eredeti probléma a varakozasokkal ellentétben eldont-
hets. Ennek egyik kovetkezménye, hogy fontos algebraosztalyokrol, a vége-
sen generalt kongruenciadisztributiv kvazivarietasokrol eldonthetd, hogy a
klasszikus Pontrjagin-, Stone-, illetve Priestley-féle dualitasokhoz hasonlé-
an, topologiai moédszerekkel leirhatdk-e.

Doktori értekezésem megértéséhez csak az univerzalis algebra alapfogal-
mainak ismeretére van sziikség, melyek mindegyike az egyetemi tanulmé-
nyok alatt el6fordul, illetve a [2] vagy [24] konyvekben fellelhets. Annak
ellenére, hogy a tobbségi fiiggvény létezésének problémajat a természetes
dualitdsok elmélete motivalta (lasd [4, 5, 6]), ezen elmélet ismeretére nem
lesz sziikségiink. A hivatkozasok megkdnnyitése érdekében megtartottam az
értekezésben kimondott definicidk és tételek szamozésat.

F-félhalok

Az univerzélis algebrai vizsgélatok egyik f6 célja altalanos algebraosztalyok
minél teljesebb leirdasa. G. Birkhoff tétele szerint az azonossagokkal defi-
nidlhaté algebraosztélyok, mint példaul a klasszikus csoportok, gytrtik, és
halok alkotta varietdsok minden algebraja az osztaly épitGkoveinek tekint-
het§ szubdirekt irreducibilis algebrék szubdirekt szorzatara bonthat6. Mivel
nagyon sok algebrai tulajdonsag vizsgalata visszavezethets szubdirekt irre-
ducibilis algebrak vizsgalatara, fontos kutatasi teriilet ezen algebrak leirasa.

A félhalok varietasaban példaul ez a leirds trivialis, mivel csak a kéte-
lemt félhalé szubdirekt irreducibilis. Méashol a helyzet nem ilyen egyszert,
mint példaul a turnamentek altal generdlt varietasban [22], ahol nem min-
den algebra turnament, de a szubdirekt irreducibilis algebrak azok. Léteznek
olyan (rezidualisan nagy) varietdsok is, mint példaul a kvaterni6csoport al-
tal generalt varietas, ahol a szubdirekt irreducibilis algebrak valédi osztalyt
alkotnak, és valamilyen értelemben leirdsuk reménytelen. Ezért sokszor az
egyszerd algebrak vizsgalatara szoritkozunk, azaz olyan szubdirekt irredu-
cibilis algebrékra, melyeknek csak trividlis kongruenciai vannak. A véges
egyszerid csoportok klasszifikdcioja mutatja legjobban, hogy még ez a prob-
léma is milyen nehéz altaldban.

T6bb probléma vizsgalataban természetes médon keriilnek els felcserél-
hets félhalomiivelettel rendelkezs algebrak, azaz olyan algebrak, melyekben
minden f(z1,...,x,) miveletre teljesiil az

flei ANy, ;xn Ay1) = f(xr, oo zn) A flyr, .o, Un)

61



azonossag. Sok tekintetben ezen algebrdk nagyon hasonléan viselkednek a
modulusokhoz. Példaul K. Kearnes és Szendrei Agnes [15] cikke alapjén ha
valamely lokalisan véges varietés a szelid kongruencidk elmélete szerint (lasd
[9]) csak 5-s tipust tartalmaz, és teljesiil benne egy specidlis term-feltétel,
akkor létezik olyan félhalo-kifejezésfiiggvénye, amely minden mivelettel fel-
cserélheté. Az olyan idempotens algebrak vizsgalataban, amelyekben az
alapmitveletek egymassal mind felcserélhetGek, a félhalomiivelettel rendelke-
76 algebrak fontos szerepet jatszanak, melyeket félhalomoédoknak neveziink.
Lokalisan véges félhalomodok varietasaiban a szubdirekt irreducibilis algeb-
rakat K. Kearnes irta le a [14] cikkben.

Erdekes, felcserélhets félhalomiivelettel rendelkezs algebrat kapunk, ha
félhalohoz automorfizmusokat, mint 1j egyvaltozés miiveleteket adunk hoz-
zé. Ezt altalaban is elvégezhetjiik [3]: minden V varietas természetes médon
kibévithets egy rogzitett F automorfizmus-monoiddal ugy, hogy az A € V
algebrakhoz olyan 4j egyvaltoz6s miveleteket vesziink hozz4, amelyek endo-
morfizmusként hatnak A-n. Ennek a konstrukciénak mi csak a kdvetkezs
specialis esetével foglalkozunk.

1.1. Definicié. A kétvaltozos A miiveletet és az F halmaz elemeivel je-
161t egyvéltozos miiveleteket tartalmazo S = (S; A, F') algebrat F-félhdlonak
nevezziik, ha F = (F;-, 7! id) csoport, és S-ben teljesiilnek az alabbi azo-
nossagok:

1) a félhalo-azonossagok a A miiveletre,

)

2) id(z) ~

3) f(g(z)) = (f-g)(x) minden f,g € F miiveletre, és
)

(
(
(
(4

flxAy) =~ f(z) A f(y) minden f € F miiveletre.

Minden félhal6 trividlis médon F-félhaloként is tekinthetd, ha az F-beli
egyvéltozos miiveletek mindegyikét identikus leképezésnek definidljuk. Ennél
egy sokkal érdekesebb példa a kovetkezd.

1.2. Definicié. Legyen F = (F;-, 71 id) régzitett csoport. Az F halmaz
hatvanyhalmazan definialjuk a P(F) = (P(F); A, F') F-félhalot a kovetkezs-
képpen:

(1) ANB= AN B minden A, B C F elemre, és
(2) f(A)=A- f! minden f € F mitiveletre és A C F elemre.

Az els6 fontos allitasunk visszavezeti a szubdirekt irreducibilis F-félhalok
vizsgalatat a fent definialt P(F') algebra részalgebrainak vizsgélatéra.

1.6. Segédtétel. Minden szubdirekt irreducibilis F-félhdlo izomorf P(F')
valamely U részalgebrajaval, amelynek létezik eqy egyértelmiien meghatdro-
zott M C F eleme, melyre a kovetkezdk teljesiilnek:

(1) M monoid, azazid € M és M - M = M,
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(2) A= M - A minden A € U elemre, és
B) M=({AeU]|ide A}.

Ezen segédtétel felhasznalasaval kdnnyen adodik a véges szubdirekt irre-
ducibilis F-félhalok, illetve a lokalisan véges F' csoportok esetében az Osszes
szubdirekt irreducibilis F-félhalo jellemzése (az 1.4. Allitas és 1.7. Kovet-
kezmény). Ezekben a speciélis esetekben az U algebra tartalmazza az iires
halmazt, és M részcsoport F-ben. Nem meglepd, hogy ezek az elemek fontos
szerepet jatszanak az egyszerd F-félhalok kovetkezd fontos osztalyaban is.

1.8. Definicié. Az F csoport minden M részcsoportjara legyen S(M) a
P(F) F-félhalo azon részalgebraja, amelynek elemei az iires halmaz és M
jobb oldali mellékosztalyai.

S(M) olyan ,Japos” félhdlo, amelyben az iires halmaz a zéruselem, M
jobb oldali mellékosztélyai az atomok, és az F csoport tranzitiv permutécio-
csoportként hat az atomok halmazan. Az S(M) algebrdk pontosan azokat
az egyszeri F-félhalokat irjak le, amelyeknek a félhdlérendezésre nézve van
legkisebb eleme és legalabb egy atomja.

J. Jezek a [11] cikkében leirta az egyszert, két egymaéssal is felcserélhetd
automorfizmussal bdvitett félhalokat, azaz a (Z x Z;+)-felhalok varietésa-
ban az egyszerid algebrdkat. Ennek tetszéleges kommutativ F csoportra valo
kiterjesztése a [19] dolgozat legfontosabb eredménye. Az el6z6 S(M) egy-
szerti F-félhalokon kiviil a lineéaris félhdlérendezéssel rendelkezs kovetkezs
F-félhéalok is fontos szerepet jatszanak:

1.13. Definicié. A kommutativ F csoportnak a valés szamok (R; +) additiv
csoportjaba térténé minden nemtrivialis 6 homomorfizmuséra definidljuk az
Rj = (R; min, F) F-félhalot a kovetkezGképpen:

(1) min(a,b) a valos szamok természetes rendezése szerinti kisebbik szém,
és

(2) f(a) =a— B(f) minden f € F miveletre és a,b € R szamokra.

1.16. Definicié. A §: F — (R;+) homomorfizinust siérdinek nevezziik, ha
minden val6s € > 0 szdmhoz létezik olyan f € F elem, hogy 0 < 3(f) <e.

Ha f8 az 1.13. definiciéban nem stird, akkor 3 képe az (R;+) csoportban
(Z; +)-szal izomorf részcsoportot alkot. Ezt kiilon esetnek fogjuk tekinteni:

1.18. Definicié. A kommutativ F csoportnak az egész szamok (Z; +) addi-
tiv csoportjara torténé minden sziirjektiv o homomorfizmuséhoz definidljuk
a Zq = (Z;min, F') F-felhalot a kovetkezGképpen:

(1) min(a,b) az egész szamok termeészetes rendezése szerinti kisebbik szém,
és

(2) f(a) =a—a(f) minden f € F miveletre és a,b € Z szamokra.
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1.21. Tétel. Ha F kommutativ csoport, akkor minden eqyszerd ¥F-félhdlo a
kovetkezd egqyszerd algebrdk valamelyikével izomorf:

(1) Saz, ahol M az F csoport valamely részcsoportja,

(2) Zg, ahol a: F — (Z;+) szirjektiv csoport-homomorfizmus, és

o

(3) az Rg algebra barmely részalgebrdja, ahol B: F — (R;+) sird csoport-
homomorfizmus.

A felsorolt algebrdk pdronként nem izomorfak, kivéve azt az esetet, amikor 3
€s B stirid csoport-homomorfizmusok, S1 és So rendre az Rg, és Rg, algebrdk
részalgebrdi, és léteznek olyan valos t > 0 és d szamok, hogy B2 = t( €s

Sy =157 + d.

Végezetiil megemlitjiik, hogy a nemkommutativ eset ennél bonyolultabb.
A [19] cikkben példat adunk olyan egyszertd F-félhalora, amelynek van leg-
kisebb eleme, de nincs atomja, és félhalérendezése nem linearis.

Dualitaselmélet és a tobbségi fiiggvény probléma

A dualitaselmélet a klasszikus Pontrjagin-, Stone-, illetve Priestley-féle duali-
tas kozos altalanositasakeént fejl6dott ki (lasd [6]). Az elmélet szerint algebrak
valamely A osztilya és a koztiik 1étez6 homomorfizmusok alkotta kategoria
duélisan ekvivalens egy megfelelGen vilasztott topoldgiai struktarak X osz-
tdlyanak és folytonos, struktiramegérzé fliggvényeinek kategoriajaval. Az
A osztaly minden esetben valamely P € A algebra altal generalt kvaziva-
rietds. Az X osztaly valamely P € X topologiai struktira hatvanyainak
zart részstrukturaival izomorf strukturak osztalya. Tovabbéa a P algebra és
a P topoldgiai struktira alaphalmaza mindig megegyezik. A részleteket ke-
riilve megjegyezziik, hogy az A € A algebra A € & dualisanak pontjai a
¢: A — P homomorfizmusok; illetve az X € X’ topologiai struktira X € A
dudlisdnak elemei az f: X — P folytonos, struktiramegérz fiiggvényei.

Példa. A Ponitrjagin-féle dualitds esetében A az Abel-féle csoportok varie-
tasa, P a komplex szamok multiplikativ csoportjinak P = {z € C : |z| = 1}
részhalmazdn értelmezett (P;-, =1 1) egységkdrcsoport, X a kompakt topold-
gikus Abel-féle csoportok kategoridja, és végezetil P = (P;-, 1. 1,7), ahol 7
a komplex szamsik topologidjinak az egqységkorre vald megszoritdsa.

Példa. A Stone-féle dualitds esetében A a Boole-algebrik varietdisa, P =
({0,1}; A, V,7,0,1) a kételemi Boole-algebra, X a teljesen szétesé Hausdor(f-
terek kategoridja, és P = ({0,1};7), ahol T a diszkrét topoldgia. Kdnnyen
lathatd, hogy az A € A Boole-algebra ultrafilterei éppen az A algebra P-be
mend homomorfizmusainak felelnek meg.

Példa. A Priestly-féle dualitds esetében A a korldtos disztributiv hdlok va-
rietisa, P = ({0,1};A,V,0,1) a kételemid korldtos disztributiv hdlo, X a
teljesen rendezésszétesd terek kategoridja, és P = ({0,1};<,7), ahol T a

64



diszkrét topoldgia. Konnyen ldthatd, hogy az A € A korldtos disztributiv hd-
1o primfilterei éppen az A algebra P-be mend homomorfizmusainak felelnek
meg.

Azt mondjuk, hogy a P algebra rendelkezik természetes dualitdssal, ha
létezik olyan P topologiai struktira, amelyre a dualitaselmélet dltal megha-
tdrozott modon, a P altal generalt A kvédzivarietdsnak a P altal generalt X
kategoria dudlis reprezentéicidja. Nem minden algebra rendelkezik természe-
tes dualitassal, és nem vilagos, hogy ez a tulajdonsag egyéltalan eldonthets-e
véges algebrakra. Ezt a probléméat nevezziik természetes dualitdsi problémd-
nak.

Nagy attorést jelentett a dualitaselmélet vizsgalataban a kdvetkezs ered-
mény, amely algebrék egy jelentGs osztalyara a természetes dualitasi problé-
mat tisztan algebrai problémara redukalta. A P algebra t kifejezésfiiggvényét
tobbségi fiiggvénynek nevezzilk, ha az teljesiti a

ty,z,...,z) = t(x,y,z,...,0) = = t(z,...,z,y) = x

azonossagokat. FEgyesités-féligdisztributivnak neveziink egy halot, ha abban
teljesiil az
xVy=zVz = axV(yANz)=xVy

kvéziazonossdg. Az A € A algebra kongruencia-egyesitésféligdisztributiv, ha
A kongruenciahaloja egyesités-féligdisztributiv.

Tétel (B. A. Davey, L. Heindorf és R. McKenzie [5]). Tetszdleges véges P

algebrdra és az dltala generdlt A kvdzivarietdsra a kévetkezd dllitdsok ekviva-
lensek:

(1) P rendelkezik tobbségi kifejezésfiigguénnyel.

(2) P rendelkezik természetes dualitdssal, és A minden algebrdja kongru-
enciadisztributiv.

(3) P rendelkezik természetes dualitdssal, és A minden véges algebrdja kon-
gruencia-egyesitésféligdisztributiv.

A tébbségi fiigguény problémdt az el6z8 tétel motivalta, ahol véges al-
gebrarol kell azt eldonteni, hogy rendelkezik-e tobbségi kifejezésfiiggvénnyel.
Természetesen, ha tudnank a tobbségi fliggvény véltozoinak szamat, akkor
magat a tobbségi fiiggvényt mar konnyen megkereshetnénk, mivel a megfelels
szamu elem altal generalt szabad algebrat egyszerd kiszdmolni. A nehézséget
az jelenti, hogy nem tudjuk a tobbségi kifejezésfiiggvény valtozodinak szamat,
ha egyaltalan létezik; de még fels§ korlatunk sincs ré.

Tobbségi kifejezésfiiggvénnyel rendelkezd algebrak természetes mdédon
fordulnak el6 az univerzalis algebra kiilonbo6z§ teriiletein. Példaul minden
h&lo rendelkezik az

(xAy)V(yAz)V(zAx)
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haromvaltozos tobbségi fiiggvénnyel. E. L. Post [27] klasszifikaciojabol kide-
riil, hogy kételemd alaphalmazon majdnem minden klén tartalmaz tobbségi
miveletet. Ismert, hogy minden tobbségi fiiggvénnyel rendelkezd algebra
kongruenciadisztributiv varietast generél, és véges azonossagbazissal rendel-
kezik (feltéve, hogy csak véges sok alapmiivelete van).

Konnyen eldénthets, hogy egy véges algebra kongruenciadisztributiv va-
rietast generél-e, mert elég a véges sok haromvaltozos kifejezésfiiggvény ko-
zOtt Jonsson-fliggvényeket keresni. Ha a tobbségi fliggvény probléma eldont-
hetetlen lenne, akkor az el6z6 megjegyzések alapjan a tObbségi fiiggvény
probléma kongruenciadisztributiv varietast general6 algebrékra is eldonthe-
tetlen volna, és a tétel szerint igy a természetes dualitasi probléma is eldont-
hetetlen lenne.

A parcialis tobbségi fiiggvény eldonthetetlensége

R. McKenzie a kovetkezs megkdzelitéssel probalta a tobbségi fiiggvény prob-
lémanak az eldonthetetlenségét bizonyitani:

2.1. Definicié. Legyen t(x1,...,x,) az A algebra kifejezésfiiggvénye, és le-
gyen S C A. Azt mondjuk, hogy t parcidlis t6bbségi fligguény az S halmazon,
ha a

ty,z,...,z) =t(z,y,z,...,x) = =t(x,...,x,y) ==

egyenlGség teljesiil minden x,y € S elemre.

Konnyen lathato, hogy a t kifejezésfiiggvény akkor és csak akkor tobb-
ségi fliggvénye az A algebranak, ha az A altal generalt varietds két elem
altal generdlt szabad algebrajaban t parcidlis tobbségi fliggvény a generalod
elemek {x,y} halmazan. Taldn ez motivalta a parcialis tobbségi fiiggvény
eldonthetdségeét vizsgalo [23] cikket, amelyben R. McKenzie bebizonyitja,
hogy a parcialis tobbségi fliggvény létezése eldonthetetlen kételemti részhal-
mazokra. A disszertacio masodik fejezetében ezt az eredményt terjesztem ki
olyan részhalmazokra, amely az algebra két elemén kiviil minden més elemet
tartalmaz.

2.2. Tétel. Nem létezik olyan algoritmus, amely tetszdleges véges A algeb-
rarol és r,w € A elemekrdl eldontené, hogy A rendelkezik-e parcidlis t6bbségi
kifejezésfiigguénnyel az A\ {r,w} halmazon.

Ez a tétel nem tinik jelentGsnek utodlag, a tébbségi fliggvény létezésének
eldonthetségét ismerve. Mindenesetre a bizonyitasban hasznalt technikak
onmagukban is érdekesek, és esetleg hasznosak lehetnek més kifejezésfiigg-
vények létezésével foglalkozé problémék elddnthetGségének vizsgalatakor.

A bizonyitasban Minsky-gépeket hasznélunk, amelyek lényegében ekvi-
valensek a Turing-gépekkel (lasd [25, 26]). A Minsky-gép végtelen szalag he-
lyett csak két regiszterrel rendelkezik, amelyek tetszéleges nemnegativ egész
értéket vehetnek fel. A gép programja dllapotok, koztik egy kezdd- és egy
ledlloallapot, illetve parancsok véges halmazaibol all. Kétféle parancs van: az
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els6 az adott allapotban az egyik regiszter aktuélis értékét eggyel megnoveli,
majd a gépet egy 1j allapotba lépteti. A masik fajta parancs végrehajta-
sakor a gép el6szor megnézi, hogy milyen érték van az adott regiszterben;
ha az nem nulla, akkor a gép azt eggyel csokkenti, és 1) allapotba 1ép; ha
nulla, akkor egy masik allapotba lép. A gép szdmitdsdn a gép allapotainak és
regiszterei értékeinek a lépések sordn felvett (akar végtelen) sorozatat értjiik.

Mivel a Minsky-gépek megallési probléméja eldonthetetlen, ezért minden
M Minsky-géphez elég (egy algoritmus segitségével leirhatd) olyan speciélis
r, w elemekkel rendelkezé A (M) algebrat definialni, amelynek akkor és csak
akkor van parcialis tobbseégi kifejezésfiiggvénye az alaphalmaz A(M)\ {r, w}
részhalmazan, ha M megall.

Az A(M) algebra konstruckiojaban az alaphalmaz, illetve a miveletek
halmaza rendre M allapotainak, illetve parancsainak halmazatol fiigg. A
konstrukcioban az a célunk, hogy M megallo szamitasat bekodoljuk A (M)
valamely parcialis tobbségi kifejezésfiiggvényébe. A bizonyités legkritiku-
sabb része az, amikor megmutatjuk, hogy M megallé szamitasa felfedezhets
minden olyan t kifejezésfiiggvény alapmiiveletekbdl felépitett fajaban, amely
az A(M) \ {r,w} halmazon parcialis tobbségi fiiggvény. Az alapmivele-
tek megfelel definicidjaval elérhetd, hogy ilyen esetben t lényegében linearis
szerkezetd legyen, amely M allapotainak egy sorozatat kodolja. Megfelels-
en definidlva az alapmiveleteket, példaul tgy, hogy a kiilonb6zé mrtiveletek
értékkészlete kiilonbozd legyen, konnyen elérheté az is, hogy az é&llapotok
sorozata lényegében helyes legyen azt az esetet kivéve, amikor a kdvetkezs
allapot attol fiigg, hogy a regiszter tartalma nulla-e vagy nem. Ezt a problé-
méat ugy oldjuk meg, hogy az allapotok mellé meg azt is bekodoljuk, hogy az
adott lépésben az egyes regiszterek értéke nulla-e. Természetesen a regiszter
pillanatnyi értékét, ami tetszélegesen nagy természetes szam lehet, nem tud-
juk bekodolni, mivel az A (M) algebranak csak véges sok eleme és miivelete
lehet. Mar csak azt kell ellenérizniink, hogy a faban koédolt allapotok és a
regiszterek nulla értékét jelz6 kodok a Minsky-gép szamitdsanak megfelelGen
vannak-e elhelyezve. Ezt a faban el6forduld valtozok megfelel parositasaval
oldjuk meg, felhasznalva azt, hogy ismerjiik ¢ értékét a parcialis t&bbségi
fliggvény altal elGirt helyeken.

A w € A(M) elemnek (lényegében) megvan az ugynevezett elnyeld tu-
lajdonsdga, azaz minden f(x1,...,xz,) alapmiveletre a

we{z,...,xn} = f(z1,...,20) =w

tulajdonsag teljesiil. Az alkalmazott modszer a w elem segiségével jelzi, ha
a t kifejezésfiiggvény alakja vagy az dltala bekodolt allapotsorozat nem felel
meg a megall6 szamitasnak. Ha valahol eltérés van, akkor a faban lev§ vala-

mely alapmivelet a megfelels tobbségi (z, ..., x,y, , ..., z) kiértékelésnél a
w elemet adja vissza, ami automatikusan terjed a faban a gyokér felé. Ebbgl
az kovetkezne, hogy t(z,...,z,y,x,..., ) = w, ami pedig ellentmondas.

Valoszini, hogy a 2.2. tételt ki lehet terjeszteni az alaphalmaz csak egyet-
lenegy elemét, w-t kizar6 részhalmazéra, amit a [13]| kézirat eredményéhez
hasonl6an, legegyszeriibben parcidlis algebrakra lehet megfogalmazni:
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1. Probléma. Véges parcidlis algebrarol eldonthetd-e az, hogy rendelkezik
olyan kifejezésfiigguénnyel, amely minden tébbségi kiértékelésnél értelmezve
van, €s teljesiti a tobbségi fliggvény azonossdgait?

A tobbségi fiiggvény eldonthetdsége

A disszertacio utolsod fejezetében bebizonyitom, hogy a tobbségi fiiggvény
probléma eldénthets. Mivel a bizonyitas sordn a klénok nyelvezetét haszné-
lom, magét a tételt is igy mondom Kki:

3.17. Tétel. Véges halmazon definidlt véges sok miveletrdl eldonthetd, hogy
az dltaluk generdlt klon tartalmaz-e tébbségi fiiggvényt.

A bizonyitas a kévetkez6 otletre épiil. A miiveletek és a rajtuk értelme-
zett kompozicidoperator hasznalata helyett a miiveletek olyan osztalyozasat
keressiik, amelyben

(1) a tobbsegi fiiggvények az osztalyozas egyik blokkjat alkotjak,
(2) a blokkok halmazan be lehet vezetni a kompozicié fogalmét, és

(3) elég kevés blokk van ahhoz, hogy véges lépésben meg lehessen hatarozni
a blokkok kompoziciéra zart halmazait.

Ezek alapjan taldn nem annyira meglepd a kdvetkez6 definicio, melynek ki-
mondéséhoz sziikséges néhany jeldlés bevezetése. Legyen w, illetve w™ rendre
a véges, illetve megszamlalhato szamossagok halmaza. Az A halmazon értel-
mezett miveletek halmazit O4-val jeldljiik, tovabbd minden n € w egészre
legyen O%) = A" ami az A halmazon értelmezett n-valtozos miveletek
halmaza.

3.1. Definicié. Minden f € (’)XL) miiveletre és ¢ € w egészre definidljuk az
f miivelet i-edik polimerjének nevezett f|; € Of) kétvaltozds miveletet:
f(m,...jx,\g,x,...,x) ha 0<i<n,

flx,...,x) hai>n,

Fli(z,y) = {

ahol y az i-edik pozicidban szerepel az els§ esetben. Az f miivelet polimer-
jeinek multihalmazéat f karakterisztikus fliggvényének nevezziik, ami forma-
lisan a

xf(b) ={icw: fli =b}

formula altal definialt y;: OF) — wt leképezés,

Konnyen belathatd, hogy a tobbségi fliggvények jellemezhetGek polimer-
jeik segitségével gy, hogy minden polimernek z-szel kell egyenlének lennie.
Kovetkezésképp az Osszes tobbségi fliggvénynek ugyanaz a yny leképezés a
karakterisztikus fliggvénye, amelyet a

w hab(z,y) ~x,
Xnu (D) = ( B} )
0 egyébként
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formula definial. Legyen X4 az A halmazon értelmezett miiveletek karakte-
risztikus fliggvényeinek halmaza. Tehét a karakterisztikusfiiggvény-képzés

X:0pq — Xy, X: f=xy

operatoranak magja teljesiti az (1)-es célkittizésiinket.

A Cr kompoziciboperator technikai definicigjat itt nem adjuk meg. Elég
most annyit tudnunk réla, hogy megkiilonboztetjik a ,kiils¢” F C Oy mi-
veleteket azoktdl a ,bels§” elemektsl, amelyekre az F-beli miveleteket alkal-
mazzuk. Miveletek minden F,G C Oy4 halmazaira Cx(G) tartalmazza az
0sszes olyan

tyrs--uw) = flg(zin, - x1n), - 9(@m1, - - Tinn))

miiveletet, ahol f € F és g € G rendre m- és n-valtozds miiveletek, tovabba
{z11,- - s Zmn} € {y1,...,yx}. A karakterisztikus fiiggvények kompozicido-
peratoranak jeldlésére is ugyanazt a Cx szimbolumot hasznaljuk: igy minden
U C X4 halmazra Cr(U) C X4. A két kompoziciboperator kozotti kapcso-
latot, a (2)-es célkitiizés valodi tartalméat, a kovetkezs segedtétel fejezi ki.

3.6. Segédtétel. XCx(G) = CrX(G) tetszdleges F,G C O, halmazokra.

Az eddigiek alapjan az F miiveletek altal generalt (F) klon akkor és csak
akkor tartalmaz tobbségi fiiggvényt, ha az egyvaltozos projekcio xiq karak-
terisztikus fiiggvényébdl kiindulva a Cx kompozicidoperator véges sokszori
alkalmazasaval x,, megkaphat6. Sajnos a (3)-as célkittizés megvalositasatol
még nagyon messze vagyunk; valgjadban annak csak egy gyengitett valtozatat
bizonyitjuk.

Tegyiik fel, hogy mind az A alaphalmaz, mind az F C O4 miiveletek
halmaza véges, tovabba azt, hogy (F') tartalmaz tobbségi fiiggvényt. Lo-
vasz Laszlonak a Kneser-grafok kromatikus szamarol szolo tételét (lasd [18])
felhasznalva megmutathato, hogy (F')-nek tartalmaznia kell a tobbségi fiigg-
vény azonossigaihoz nagyon hasonlé technikai feltételt teljesitd g miveletet
is, amelynek valtozészama csak A elemszamatol fligg, igy az megkereshetd.

A g miivelet segitségével egy jolrendezett parciélis rendezést definidlunk
a karakterisztikus fliggvények valamely részhalmazan. Megmutatjuk, hogy
ha a kompoziciboperatort (karakterisztikus fiiggvényekbdl 4llo) filterre alkal-
mazzuk, akkor ismét filtert kapunk. A kapott filter minimélis elemei (melyek
szama sziikségképpen véges) az eredeti filter minimalis elemeibdl kiszamit-
hatok. Ha a kompoziciboperatort ismételten alkalmazzuk, akkor filterek egy,
a tartalmazasra nézve boviilg lancat kapjuk. Ismert azonban, hogy jdlren-
dezett parcialis rendezés filterei nem alkothatnak végtelen, szigortiian béviilg
lancot, tehat ennek az eljarasnak véges lépésben meg kell allnia, és igy a ka-
rakterisztikus fliggvények kompozicioperator szerinti lezartja kiszamithato.

Ahogy mar utaltunk ré, az [5] cikk eredményét felhasznalva a bizonyi-
tott tétel kovetkezményeként azt is megkaptuk, hogy kongruencia-egyesités-
féligdisztributiv varietasba tartozé véges algebrakra a természetes dualitds
problémaéja eldonthetd.
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Mivel legfeljebb r-valtozos miveletekkel rendelkezd algebrabdl csak véges
sok definialhat6 egy n-elemd halmazon, a tobbségi fiiggvény eldonthetségé-
bdl az is kovetkezik, hogy létezik olyan N(n,r) rekurziv fiiggvény, amely
feliilrsl korlatozza a t&bbségi fiiggvénnyel rendelkezs ilyen algebrik tobbsé-
gi fliggvényeinek minimalis valtozoszamat. Kovetkezésképpen, minden ilyen
A algebréara elég a legfeljebb N(n,r) valtozoju kifejezésfiiggvények kozott
keresni a tobbségi fiiggvényt. Ha ilyet nem taladlunk, akkor A-nak nincs
tobbségi kifejezésfiiggvénye. Tudjuk, hogy létezik ilyen rekurziv fiiggvény,
de egyeldre nincs ra formulank.

Nagyon érdekes megoldatlan probléma kapcsolddik az tigynevezett kény-
szerkielégithetségi problémahoz (constraint satisfaction problem). A prob-
lémat itt mi nem definidljuk; az érdekl6ds olvasénak T. Feder és M. Y. Vardi
[8] cikkét ajanljuk. A [10] cikk eredménye szerint, ha reléciok egy I' halma-
zdnak van kompatibilis tobbségi fiiggvénye, akkor a CSP(I") kényszerkielé-
githetGségi probléma polinomiélis idében megoldhaté. Ezért (is) érdekes a
tobbségi fiiggvény relaciokra vonatkoztatott probléméja:

2. Probléma. Véges halmazon értelmezett reldciok véges halmazdrol eldont-
hetd-e, hogy létezik a reldciokkal kompatibilis t6bbségi fligguény?

Egyelére nem ismerjiik erre a probléméra a véalaszt. Tudjuk azt (lasd
pl. [31]), hogy ha relaciok (akar végtelen) I" halmazahoz létezik kompatibilis
tobbségi fiiggvény, akkor mind a I' altal generalt relacioklon, mind a rela-
ciokkal kompatibilis miveletek klonja végesen generdlt. Utolsé problémank
ehhez a kérdéskorhoz kapcsolodik:

3. Probléma. Véges, kozos alaphalmazon értelmezett miveletek F és reld-
ciok T' halmazairdl eldonthetd-e, hogy az (F) klon megegyezik a T'-val kom-
patibilis midveletek klonjdval?
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